Fatal Transmissible Amyloid Encephalopathy: A New Type of Prion Disease Associated with Lack of Prion Protein Membrane Anchoring
Bruce Chesebro1*, Brent Race1, Kimberly Meade-White1, Rachel LaCasse1, Richard Race1, Mikael Klingeborn1, James Striebel1, David Dorward2, Gillian McGovern3, Martin Jeffrey3
1 Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America, 2 Electron Microscopy Section, Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America, 3 VLA (Lasswade), Penicuik, Scotland, United Kingdom
Abstract
Prion diseases are fatal neurodegenerative diseases of humans and animals characterized by gray matter spongiosis and accumulation of aggregated, misfolded, protease-resistant prion protein (PrPres). PrPres can be deposited in brain in an amyloid-form and/or non-amyloid form, and is derived from host-encoded protease-sensitive PrP (PrPsen), a protein normally anchored to the plasma membrane by glycosylphosphatidylinositol (GPI). Previously, using heterozygous transgenic mice expressing only anchorless PrP, we found that PrP anchoring to the cell membrane was required for typical clinical scrapie. However, in the present experiments, using homozygous transgenic mice expressing two-fold more anchorless PrP, scrapie infection induced a new fatal disease with unique clinical signs and altered neuropathology, compared to non-transgenic mice expressing only anchored PrP. Brain tissue of transgenic mice had high amounts of infectivity, and histopathology showed dense amyloid PrPres plaque deposits without gray matter spongiosis. In contrast, infected non-transgenic mice had diffuse non-amyloid PrPres deposits with significant gray matter spongiosis. Brain graft studies suggested that anchored PrPsen expression was required for gray matter spongiosis during prion infection. Furthermore, electron and light microscopic studies in infected transgenic mice demonstrated several pathogenic processes not seen in typical prion disease, including cerebral amyloid angiopathy and ultrastructural alterations in perivascular neuropil. These findings were similar to certain human familial prion diseases as well as to non-prion human neurodegenerative diseases, such as Alzheimer's disease.
Author Summary
Prion diseases, also known as transmissible spongiform encephalopathies, are infectious fatal neurodegenerative diseases of humans and animals. A major feature of prion diseases is the refolding and aggregation of a normal host protein, prion protein (PrP), into a disease-associated form which may contribute to brain damage. In uninfected individuals, normal PrP is anchored to the outer cell membrane by a sugar-phosphate-lipid linker molecule. In the present report we show that prion infection of mice expressing PrP lacking the anchor can result in a new type of fatal neurodegenerative disease. This disease displays mechanisms of damage to brain cells and brain blood vessels found in Alzheimer's disease and in familial amyloid brain diseases. In contrast, the typical sponge-like brain damage seen in prion diseases was not observed. These results suggest that presence or absence of PrP membrane anchoring can influence the type of neurodegeneration seen after prion infection.
Citation: Chesebro B, Race B, Meade-White K, LaCasse R, Race R, et al. (2010) Fatal Transmissible Amyloid Encephalopathy: A New Type of Prion Disease Associated with Lack of Prion Protein Membrane Anchoring. PLoS Pathog 6(3): e1000800. doi:10.1371/journal.ppat.1000800
Editor: David Westaway, University of Alberta, Canada
Received: September 25, 2009; Accepted: January 29, 2010; Published: March 5, 2010
This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
Funding: Funded by the Intramural program of NIAID. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Competing interests: The authors have declared that no competing interests exist.
* E-mail: bchesebro@nih.gov
see full text here;
http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1000800
Alzheimer's and CJD
http://betaamyloidcjd.blogspot.com/
TSS
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment