Friday, September 21, 2018

World Alzheimer’s Day 21 September 2018

News Release

World Alzheimer’s Day – Doctor diagnoses her own dementia

London, 21 September 2018
21 September is World Alzheimer’s Day – Alzheimer’s Disease International has released the “World Alzheimer Report 2018 – The state of the art of dementia research”
  • Every 3 seconds someone in the world develops dementia
  • Dementia became a trillion-dollar disease in 2018
  • Dementia is the 7th leading cause of death worldwide
  • Many countries have no dementia diagnostic tools, no access to clinical trials and, few specialised doctors and researchers
A UK based doctor who diagnosed her own dementia after being misdiagnosed by her neurologist, is calling for an urgent response to dementia research and diagnosis.
Dr Jennifer Bute is now one of the 50 million people in the world with dementia. That figure is expected to skyrocket to 132 million by 2050.

At first it was passwords, I just couldn’t remember passwords and names. The first neurologist wouldn’t even do any tests, he said there’s nothing the matter with you,” Dr Bute said.

Soon after, I wouldn’t recognise people I had known for 20 years, then I started getting lost along familiar routes. That was kind of how it all started.

Today, 21 September, is World Alzheimer’s Day, with Alzheimer’s Disease International (ADI) releasing its World Alzheimer Report 2018. Featuring in the report, Dr Bute, hopes for greater exposure and understanding of dementia.

“When I was working as a doctor, very little was actually done proactively about dementia. My hope is that the World Alzheimer Report 2018 brings much needed exposure, attention and funding to what is now a global health crisis,” she said.

Alzheimer’s Disease International CEO Paola Barbarino, believes that one per cent of the societal cost of dementia should be devoted to funding dementia research.
“ADI is very proud to release this much needed World Alzheimer Report 2018 - The State of the art of dementia research,” Ms Barbarino said.

“This report asks where we are now, why have there been no major breakthroughs in 20 years and what are the barriers to find solutions. It looks at exciting new work in the field, the new frontiers of dementia research, and it underlines our vital call for increased dementia research funding.
“Dementia is one of the most significant global health and social crises in the 21st century, yet too often diagnosis is made late. There is also no cure for dementia, it’s the 7th leading cause of death worldwide.
“Without significant investments into dementia research, we will be unable to venture into new frontiers. The global ratio of publications on neurodegenerative disorders compared to cancer is an astonishing 1:12. Not enough people are getting into research on dementia, and that needs to change.
“We hope that the release of the World Alzheimer Report will increase awareness of Alzheimer’s disease and dementia and spark a debate which will lead to more governments and businesses dedicating funds and focus to help people with dementia and their families live better lives.”
The World Alzheimer Report 2018 features some of the best and most illustrious minds in Alzheimer’s and dementia research globally, including:
  • Alireza Atri, an internationally renowned cognitive neurologist and Senior Scientist in the Alzheimer’s Prevention Initiative at Banner Sun Health Research Institute, who is so obsessed with his mission that his car registration number is CUREAD.
  • Professor Bart de Strooper, Director of the UK Dementia Research Institute, who won the 2017 European Grand Prize for Alzheimer Research, and was co-winner, with the neurologist John Hardy, of the 2018 Brain Prize. His work has focused on understanding the fundamental mechanisms that underlie Alzheimer’s and Parkinson’s disease.
  • Professor Gordon Wilcock, co-founder of UK’s Alzheimer’s Society and the country’s first multi-disciplinary memory clinic. For seven years, he led the OPTIMA study, the Oxford Project to Investigate Memory and Ageing, which was one of the first studies to shatter the myth that dementia was a normal part of ageing.
  • Jeff Cummings, Director of the Cleveland Clinic at the Lou Ruvo Centre for Brain Health in Las Vega who wrote a paper in the journal Alzheimer’s Research Therapy looking at clinical trials into Alzheimer’s disease drug development from 2002 to 2012. The failure rate, he concluded, was 99.6%.
  • Kate Bingham, Managing Partner at SV Health Managers who helped establish the Dementia Discovery Fund for strategic investments into dementia-related drugs and therapies. She has brought neuroscientists from different backgrounds into the team and wants to pursue areas like inflammation, bio- energetics, the immune system and possibly the gut.
  • Dr Kenji Toba, President of the National Centre for Geriatrics and Gerontology in Obu, in Japan. The centre is one of six national centres for advanced and specialized medicine in Japan. He is a pioneer of dementia friendly initiatives.
  • Professor Adesola Ogunniyi, Professor of Medicine at University College Hospital, Ibadan. He is involved in projects such as the IDEA group (Identification and Intervention for Dementia in Elderly Africans) and has developed cognitive stimulation therapies specific to the Nigerian context.

Notes to editors

The report can be found at

About Alzheimer’s Disease International

Alzheimer’s Disease International (ADI) is the international federation of 94 Alzheimer associations around the world, in official relations with the World Health Organization. ADI's vision is prevention, care and inclusion today, and cure tomorrow. ADI believes that the key to winning the fight against dementia lies in a unique combination of global solutions and local knowledge. ADI works locally, by empowering Alzheimer associations to promote and offer care and support for persons with dementia and their care partners, while working globally to focus attention on dementia and campaign for policy change. For more information, please visit

The global impact of dementia Around the world, there will be one new case of dementia every 3 seconds.

50 million people worldwide are living with dementia in 2018.

This number will more than triple to 152 million by 2050.


From: TSS ( 

Subject: Evaluation of Cerebral Biopsies for the Diagnosis of Dementia Date: May 8, 2001 at 6:27 pm PST 

Subject: Evaluation of Cerebral Biopsies for the Diagnosis of Dementia 

Date: Tue, 8 May 2001 21:09:43 –0700 

From: "Terry S. Singeltary Sr." Reply-To: Bovine Spongiform Encephalopathy 

#### Bovine Spongiform Encephalopathy ####


see the Duke, Pa, Yale, and Mexican study here, showing the misdiagnosis of CJD TSE prion disease as Alzheimers ; 

Occasional PrP plaques are seen in cases of Alzheimer's Disease

5. Unfulfillment of Postulate 2

5.1 Occasional PrP plaques are seen in cases of Alzheimer’s Disease, where
they coexist with the more usual beta amyloid plaques. (Ref. Baker H.

F. Ridley R.M. Duchen L.W. Crow T.J. Bruton C.J. Induction of beta


(A4) amyloid in primates by injection of Alzheimer’s disease brain
homogenate. Mol. Neurobiol (1994) 8: 25-39.) (J/MN/8/25)

snip... full text; 

Occasional PrP plaques are seen in cases of Alzheimer’s Disease, where they coexist with the more usual beta amyloid plaques. 

(Ref. Baker H. F. Ridley R.M. Duchen L.W. Crow T.J. Bruton C.J. Induction of beta 3 (A4) amyloid in primates by injection of Alzheimer’s disease brain homogenate. Mol. Neurobiol (1994) 8: 25-39.) (J/MN/8/25) 

Singeltary comments;

Re-Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy 

>>> The only tenable public line will be that "more research is required’’ <<< 

>>> possibility on a transmissible prion remains open<<< 

O.K., so it’s about 23 years later, so somebody please tell me, when is "more research is required’’ enough time for evaluation ? 

Re-Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy 

Nature 525, 247?250 (10 September 2015) doi:10.1038/nature15369 Received 26 April 2015 Accepted 14 August 2015 Published online 09 September 2015 Updated online 11 September 2015 Erratum (October, 2015) 

snip...see full Singeltary Nature comment here; 

Alzheimer's disease

let's not forget the elephant in the room. curing Alzheimer's would be a great and wonderful thing, but for starters, why not start with the obvious, lets prove the cause or causes, and then start to stop that. think iatrogenic, friendly fire, or the pass it forward mode of transmission. think medical, surgical, dental, tissue, blood, related transmission. think transmissible spongiform encephalopathy aka tse prion disease aka mad cow type disease... 

Commentary: Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy

Self-Propagative Replication of Ab Oligomers Suggests Potential Transmissibility in Alzheimer Disease 

*** Singeltary comment PLoS *** 

Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ? 

Posted by flounder on 05 Nov 2014 at 21:27 GMT 




[9. Whilst this matter is not at the moment directly concerned with the iatrogenic CJD cases from hgH, there remains a possibility of litigation here, and this presents an added complication. 

There are also results to be made available shortly 

(1) concerning a farmer with CJD who had BSE animals, 

(2) on the possible transmissibility of Alzheimer’s and 

(3) a CMO letter on prevention of iatrogenic CJD transmission in neurosurgery, all of which will serve to increase media interest.]

snip...see full Singeltary Nature comment here; 

re-Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy 

Nature 525, 247?250 (10 September 2015) doi:10.1038/nature15369 Received 26 April 2015 Accepted 14 August 2015 Published online 09 September 2015 Updated online 11 September 2015 Erratum (October, 2015)

I would kindly like to comment on the Nature Paper, the Lancet reply, and the newspaper articles.

First, I applaud Nature, the Scientist and Authors of the Nature paper, for bringing this important finding to the attention of the public domain, and the media for printing said findings.

Secondly, it seems once again, politics is getting in the way possibly of more important Transmissible Spongiform Encephalopathy TSE Prion scientific findings. findings that could have great implications for human health, and great implications for the medical surgical arena. but apparently, the government peer review process, of the peer review science, tries to intervene again to water down said disturbing findings.

where have we all heard this before? it's been well documented via the BSE Inquiry. have they not learned a lesson from the last time?

we have seen this time and time again in England (and other Country's) with the BSE mad cow TSE Prion debacle.

That 'anonymous' Lancet editorial was disgraceful. The editor, Dick Horton is not a scientist.

The pituitary cadavers were very likely elderly and among them some were on their way to CJD or Alzheimer's. Not a bit unusual. Then the recipients, who got pooled extracts injected from thousands of cadavers, were 100% certain to have been injected with both seeds. No surprise that they got both diseases going after thirty year incubations.

That the UK has a "system in place to assist science journalists" to squash embargoed science reports they find 'alarming' is pathetic.

Sounds like the journalists had it right in the first place: 'Alzheimer's may be a transmissible infection' in The Independent to 'You can catch Alzheimer's' in The Daily Mirror or 'Alzheimer's bombshell' in The Daily Express

if not for the journalist, the layperson would not know about these important findings.

where would we be today with sound science, from where we were 30 years ago, if not for the cloak of secrecy and save the industry at all cost mentality?

when you have a peer review system for science, from which a government constantly circumvents, then you have a problem with science, and humans die.

to date, as far as documented body bag count, with all TSE prion named to date, that count is still relatively low (one was too many in my case, Mom hvCJD), however that changes drastically once the TSE Prion link is made with Alzheimer's, the price of poker goes up drastically.

so, who makes that final decision, and how many more decades do we have to wait?

the iatrogenic mode of transmission of TSE prion, the many routes there from, load factor, threshold from said load factor to sub-clinical disease, to clinical disease, to death, much time is there to spread a TSE Prion to anywhere, but whom, by whom, and when, do we make that final decision to do something about it globally? how many documented body bags does it take? how many more decades do we wait? how many names can we make up for one disease, TSE prion?

Professor Collinge et al, and others, have had troubles in the past with the Government meddling in scientific findings, that might in some way involve industry, never mind human and or animal health.

FOR any government to continue to circumvent science for monetary gain, fear factor, or any reason, shame, shame on you.

in my opinion, it's one of the reasons we are at where we are at to date, with regards to the TSE Prion disease science i.e. money, industry, politics, then comes science, in that order.

greed, corporate, lobbyist there from, and government, must be removed from the peer review process of sound science, it's bad enough having them in the pharmaceutical aspect of healthcare policy making, in my opinion.

my mother died from confirmed hvCJD, and her brother (my uncle) Alzheimer's of some type (no autopsy?). just made a promise, never forget, and never let them forget, before I do.

I kindly wish to remind the public of the past, and a possible future we all hopes never happens again. ...


Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ?


Alzheimer’s disease and Transmissible Spongiform Encephalopathy disease have both been around a long time, and was discovered in or around the same time frame, early 1900’s. Both diseases are incurable and debilitating brain disease, that are in the end, 100% fatal, with the incubation/clinical period of the Alzheimer’s disease being longer (most of the time) than the TSE prion disease. Symptoms are very similar, and pathology is very similar.


Through years of research, as a layperson, of peer review journals, transmission studies, and observations of loved ones and friends that have died from both Alzheimer’s and the TSE prion disease i.e. Heidenhain Variant Creutzfelt Jakob Disease CJD.


I propose that Alzheimer’s is a TSE disease of low dose, slow, and long incubation disease, and that Alzheimer’s is Transmissible, and is a threat to the public via the many Iatrogenic routes and sources. It was said long ago that the only thing that disputes this, is Alzheimer’s disease transmissibility, or the lack of. The likelihood of many victims of Alzheimer’s disease from the many different Iatrogenic routes and modes of transmission as with the TSE prion disease.


There should be a Global Congressional Science round table event set up immediately to address these concerns from the many potential routes and sources of the TSE prion disease, including Alzheimer’s disease, and a emergency global doctrine put into effect to help combat the spread of Alzheimer’s disease via the medical, surgical, dental, tissue, and blood arena’s. All human and animal TSE prion disease, including Alzheimer’s should be made reportable in every state, and Internationally, WITH NO age restrictions. Until a proven method of decontamination and autoclaving is proven, and put forth in use universally, in all hospitals and medical, surgical arena’s, or the TSE prion agent will continue to spread. IF we wait until science and corporate politicians wait until politics lets science _prove_ this once and for all, and set forth regulations there from, we will all be exposed to the TSE Prion agents, if that has not happened already.


Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ?

source references ...end...tss 

Hello Nicole,

by all means, please do use my poster. but I thought this was already taken care of, and I could not attend for my poster presentation, therefore, it was not going to be presented. I have some health issues and could not make the trip.

please see old correspondence below...

From: Nicole Sanders Sent: Tuesday, April 10, 2012 5:37 PM To: Terry S. Singeltary Sr. Subject: RE: re-submission

Dear Terry,

The decline of proposal number 30756 is registered in the system. Thank you for your consideration.

Best Regards,


Nicole Sanders

Senior Specialist, Membership & Conference Programming


From: xxxx 

To: Terry Singeltary 

Sent: Saturday, December 05, 2009 9:09 AM 

Subject: 14th ICID - abstract accepted for 'International Scientific Exchange'

Your preliminary abstract number: 670

Dear Mr. Singeltary,

On behalf of the Scientific Committee, I am pleased to inform you that your abstract

'Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009'

WAS accepted for inclusion in the INTERNATIONAL SCIENTIFIC EXCHANGE (ISE) section of the 14th International Congress on Infectious Diseases. Accordingly, your abstract will be included in the "Intl. Scientific Exchange abstract CD-rom" of the Congress which will be distributed to all participants.

Abstracts accepted for INTERNATIONAL SCIENTIFIC EXCHANGE are NOT PRESENTED in the oral OR poster sessions.

Your abstract below was accepted for: INTERNATIONAL SCIENTIFIC EXCHANGE

#0670: Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009

Author: T. Singeltary; Bacliff, TX/US

Topic: Emerging Infectious Diseases Preferred type of presentation: International Scientific Exchange

This abstract has been ACCEPTED.

#0670: Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009

Authors: T. Singeltary; Bacliff, TX/US

Title: Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009

Body: Background

An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.


12 years independent research of available data


I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.


I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries.

I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.

Keywords: Transmissible Spongiform Encephalopathy Creutzfeldt Jakob Disease Prion

page 114 ;

Tuesday, December 12, 2017 

Neuropathology of iatrogenic Creutzfeldt–Jakob disease and immunoassay of French cadaver-sourced growth hormone batches suggest possible transmission of tauopathy and long incubation periods for the transmission of Abeta pathology

***> PRION CONFERENCE 2018 <***

P132 Aged cattle brain displays Alzheimer’s-like pathology that can be propagated in a prionlike manner

Ines Moreno-Gonzalez (1), George Edwards III (1), Rodrigo Morales (1), Claudia Duran-Aniotz (1), Mercedes Marquez (2), Marti Pumarola (2), Claudio Soto (1) 

(1) Mitchel Center for Alzheimer´s Disease and Related Brain Disorders, Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, USA (2) Animal Tissue Bank of Catalunya (BTAC), Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autónoma de Barcelona, Bellaterra (Cerdanyola del Valles), Barcelona, Spain. 

Amyloid beta (Ab) and hyperphosphorylated tau (ptau) are the proteins undergoing misfolding in Alzheimer‘s disease (AD). Recent studies have shown that brain homogenates rich in amyloid aggregates are able to seed the misfolding and aggregation of amyloidogenic proteins inducing an earlier onset of the disease in mouse models of AD. This seeding behavior is analogous to the disease transmission by propagation of prion protein misfolding observed in prion diseases. Prion diseases can be transmitted across species by inoculation of the misfolded prion protein from one specie into an appropriate host. For example, material from cattle affected by bovine spongiform encephalopathy can be propagate in humans inducing variant Creutzfeldt-Jakob disease. In this study, we analyzed the presence of AD-related protein aggregates in the brain of old cows and investigated whether these aggregates are capable to induce pathology in animal models of AD. We observed that many of the typical hallmarks detected in human AD brains, including Ab aggregates and tangles, were present in cow brains. When cattle tissue containing Ab aggregates or ptau were intracerebrally inoculated into APP/PS1 or P301S mice, we observed an acceleration of brain misfolded protein deposition and faster cognitive impairment compared to controls. However, when the material was orally inoculated, no effect was observed. These results may contribute to uncover a previously unsuspected etiology surrounding some cases of sporadic AD. However, the early and controversial stage of the field of prion-like transmission in non-prion diseases added to the artificial nature of the animal models utilized for these studies, indicate that extrapolation of the results to humans should not be done without further experiments. 

P75 Determining transmissibility and proteome changes associated with abnormal bovine prionopathy 

Dudas S (1,2), Seuberlich T (3), Czub S (1,2) 

1. Canadian Food Inspection Agency, NCAD Lethbridge Laboratory, Canada 2. University of Calgary, Canada 3. University of Bern, Switzerland. 

In prion diseases, it is believed that altered protein conformation encodes for different pathogenic strains. Currently 3 different strains of bovine spongiform encephalopathy (BSE) are confirmed. Diagnostic tests for BSE are able to identify animals infected with all 3 strains, however, several diagnostic laboratories have reported samples with inconclusive results which are challenging to classify. It was suggested that these may be novel strains of BSE; to determine transmissibility, brain material from index cases were inoculated into cattle. 

In the first passage, cattle were intra-cranially challenged with brain homogenate from 2 Swiss animals with abnormal prionopathy. The challenged cattle incubated for 3 years and were euthanized with no clinical signs of neurologic disease. Animals were negative when tested on validated diagnostic tests but several research methods demonstrated changes in the prion conformation in these cattle, including density gradient centrifugation and immunohistochemistry. Currently, samples from the P1 animals are being tested for changes in protein levels using 2-D Fluorescence Difference Gel Electrophoresis (2D DIGE) and mass spectrometry. It is anticipated that, if a prionopathy is present, this approach should identify pathways and targets to decipher the source of altered protein conformation. In addition, a second set of cattle have been challenged with brain material from the first passage. Ideally, these cattle will be given a sufficient incubation period to provide a definitive answer to the question of transmissibility. 

=====prion 2018===

Singeltary comments;

IBNC BSE TSE Prion mad cow disease

 ***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE.

***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.

*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***

Posted by Terry S. Singeltary Sr. on 03 Jul 2015 at 16:53 GMT

let's take a closer look at this new prionpathy or prionopathy, and then let's look at the g-h-BSEalabama mad cow.

please see history of infamous atypical ghBSE Alabama style. the second Texas mad cow that was finally documented, was the ‘typical’ atypical h-BSE, not genetic. ...tss

Tuesday, November 6, 2012

Transmission of New Bovine Prion to Mice, Atypical Scrapie, BSE, and Sporadic CJD, November-December 2012 update

***> 2018 <***

''Atypical BSE is different, and it generally occurs in older cattle, usually 8 years of age or greater. It seems to arise rarely and spontaneously in all cattle populations.''


''The primary source of infection for classical BSE is feed contaminated with the infectious prion agent, such as meat-and-bone meal containing protein derived from rendered infected cattle..  Regulations from the Food and Drug Administration (FDA) have prohibited the inclusion of mammalian protein in feed for cattle and other ruminants since 1997 and have also prohibited high risk tissue materials in all animal feed since 2009.''




P98 The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge 

Greenlee JJ (1), Moore SJ (1), and West Greenlee MH (2) 

(1) United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States (2) Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States. 

In 2006, a case of H-type bovine spongiform encephalopathy (BSE) was reported in a cow with a previously unreported prion protein polymorphism (E211K). 

The E211K polymorphism is heritable and homologous to the E200K mutation in humans that is the most frequent PRNP mutation associated with familial Creutzfeldt-Jakob disease. 

Although the prevalence of the E211K polymorphism is low, cattle carrying the K211 allele develop H-type BSE with a rapid onset after experimental inoculation by the intracranial route. 

The purpose of this study was to investigate whether the agents of H-type BSE or H-type BSE associated with the E211K polymorphism transmit to wild type cattle or cattle with the K211 allele after oronasal exposure. 

Wild type (EE211) or heterozygous (EK211) cattle were oronasally inoculated with either H-type BSE from the 2004 US Htype BSE case (n=3) or from the 2006 US H-type case associated with the E211K polymorphism (n=4) using 10% w/v brain homogenates. 

Cattle were observed daily throughout the course of the experiment for the development of clinical signs. 

At approximately 50 months post-inoculation, one steer (EK211 inoculated with E211K associated H-BSE) developed clinical signs including inattentiveness, loss of body condition, weakness, ataxia, and muscle fasciculations and was euthanized. 

Enzyme immunoassay confirmed that abundant misfolded protein was present in the brainstem, and immunohistochemistry demonstrated PrPSc throughout the brain. 

Western blot analysis of brain tissue from the clinically affected steer was consistent with the E211K H-type BSE inoculum. 

With the experiment currently at 55 months post-inoculation, no other cattle in this study have developed clinical signs suggestive of prion disease. 

This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. 

These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains. 


O10 Zoonotic potential of atypical BSE prions: a systematic evaluation 

Marín-Moreno A (1), Espinosa JC (1), Douet JY (2), Aguilar-Calvo P (1), Píquer J (1), Lorenzo P (1), Lacroux C (2), Huor A (2), Lugan S (2), Tillier C (2), Andreoletti O (2) and Juan María Torres (1) 

(1) Centro de Investigación en Sanidad Animal, CISA-INIA, Carretera Algete-El Casar s/n, Valdeolmos, 28130 Madrid, Spain.(2) UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, France. 

Bovine Spongiform Encephalopathy (BSE) is the only zoonotic prion recognized to date. The transmission of BSE to humans caused the emergence of variant Creutzfeldt-Jakob disease (vCJD). In 2004 two new atypical prion agents were identified in cattle: H- and L- BSE prion strains. 

The zoonotic potential of atypical BSE prions was assessed by inoculating three different isolates of cattle H- and L-BSE in transgenic mouse lines that overexpress the human PrP covering the three different genotypes of the aminoacid 129 (TgMet129, TgMet/Val129 and TgVal129). This polymorphism is known to be a key element involved in human resistance/susceptibility to BSE. In addition, TgMet129 and TgVal129 were challenged with one H- and L-BSE isolates adapted to sheep PrP expressing hosts to assess if intermediate passage in sheep could modify the capacity of these prions to cross the human species barrier. 

Our results confirm that L-BSE transmits to TgMet129 even better than epidemic BSE. However, atypical L-BSE agent was unable to infect TgVal129 or TgMet/Val129 mice, even after passage in TgMet129. No transmission was observed with H-BSE in any mice model inoculated, irrespectively of the 129 polymorphism. After passage in sheep PrP expressing host, the properties of both H and LBSE including their capacity to cross the human species barrier were dramatically affected, emerging prion strains features that resemble those of sporadic Creutzfeldt-Jakob disease (sCJD). 

To date, this is the more extensive and complete analysis of the zoonotic potential of atypical BSE prions. These results advise not to ignore the zoonotic potential of these agents.


P77 In vitro approach to estimate the human transmission risk of prions 

Iwamaru Y (1) Imamura M (2) Matsuura Y (1) Kohtaro Miyazawa (1) Takashi Yokoyama (3) 

(1 ) National Institute of Animal Health, Prion Disease Unit, Ibaraki, Japan (2) University of Miyazaki, Division of Microbiology, Miyazaki, Japan (3) National Institute of Animal Health, Department of Planning and General Administration, Ibaraki, Japan. 

Prion diseases are fatal neurodegenerative disorders in humans and animals. The key event in the pathogenesis of these disease is the conversion of host-encoded normal cellular prion protein (PrPC) into its pathogenic isoform (PrPSc) and its accumulation in the central nervous system. One of the characteristics of prion is the species barrier that limits the transmission between different species. Currently, bioassays using transgenic mice (Tg) overexpressing PrP of different species have become valuable tools for assessing cross species transmissibility of prions. 

The recent reports describing the emergence of novel bovine spongiform encephalopathy (BSE) from H-BSE and the transmission of chronic wasting disease to swine have generated concerns of human infections of newly identified prions. Although Tg expressing human PrP have been used to model human susceptibility to animal prions, these experiments are costly and time-consuming. In addition, the results of bioassays are influenced by the lines of transgenic mice used and the lifespan of the challenged animals. These factors are needed to be taken into account when assessing the human risk of prions. 

In attempt to develop the more time- and cost-saving method for assessment of the human transmission risk of prions, we performed experiments using protein misfolding cyclic amplification (PMCA) technique to investigate whether PMCA can be compatible with bioassay.. Using brain homogenates of Tg expressing bovine PrP as the PrP substrate, we optimized the versatile PMCA condition that could amplify PrPSc from cattle affected with C-, H- or L-BSE. We measured the 50% PMCA seeding activity dose and the 50% lethal dose in 1 g equivalent of C-, H- or L-BSE cattle brain tissue by using PMCA or bioassay, respectively, and assessed the correlations between these doses. 


 P98 The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge 

Greenlee JJ (1), Moore SJ (1), and West Greenlee MH (2) (1) United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States (2) Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States. 

reading up on this study from Prion 2018 Conference, very important findings ;

***> This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. 

***> These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.



The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge

Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle
Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME.
The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle...


i don't mind at all remembering for him...he don't have to get why i adore him...he don't have to know me...because i know who he is.

about the 1 minute mark...




APHIS Concurrence With OIE Risk Designations for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0012]


Edmonton woman one of the youngest diagnosed with CJD at 35 years old and pregnant

Terry S. Singeltary Sr.