Sunday, September 7, 2014

Twice as many cases of early dementia than was thought Alzheimer’s Society, the London School of Economics and the Institute of Psychiatry

Alzheimer’s Society, the London School of Economics and the Institute of Psychiatry
 
Twice as many cases of early dementia than was thought
 
Charity calls for more help for younger people with dementia as new figures disclose twice as many cases as was thought among those aged between 30 and 65
 
Charity calls for more help for younger people with dementia as new figures disclose thousands of cases among those aged between 30 and 65
 
Surveys have found that dementia is the most feared condition among those aged 55 and over Photo: Alamy
 
Laura Donnelly By Laura Donnelly, Health Editor
 
9:00PM BST 06 Sep 2014
 
More than twice as many people in the UK have dementia before the age of 65 than was previously thought, new figures show.
 
A report due to be published this week says that 42,000 people are now estimated to be suffering early onset dementia, including thousands of cases among those in their 40s, and more than 700 cases among those in their 30s.
 
The new statistics also show the condition is slightly more common among men than women.
 
Experts said doctors too often missed symptoms of dementia in younger people, assuming they were too young to be suffering from the condition. They said services and society needed to do more to help those coming to terms with a diagnosis of dementia.
 
The figures, due to be published tomorrow, come from a state of the nation report by the Alzheimer’s Society, the London School of Economics and the Institute of Psychiatry, which will show the cost of dementia to the NHS and social services.
 
Previous estimates had suggested that just 17,000 cases of dementia involve younger people. But the new figures suggest 42,325 people below the age of 65 are currently suffering from such conditions – representing roughly five per cent of all cases of dementia. Three quarters of cases are among those aged between 60 and 65, but cases can occur among those in their 50s, 40s and even in their 30s.
 
Jeremy Hughes, chief executive at Alzheimer’s Society said: “For too long dementia has been perceived as a natural part of ageing which only affects the oldest of the old in our society.
 
“Say the word Alzheimer’s and many people picture a frail, elderly person in a care home. The risk of developing dementia does increase with age, but the reality is that dementia is caused by diseases of the brain that don’t discriminate. “
 
Surveys have found that dementia is the most feared condition among those aged 55 and over.
 
Mr Hughes said: “Many people will be coming to terms with the symptoms while still in work, perhaps looking after children and paying a mortgage. Too often we hear of people reporting memory loss to their doctor in mid-life, but being misdiagnosed because they are considered too young to have dementia. “
 
He said services need to ensure that younger adults were able to access specialist treatment and support.
 
The new estimates suggest that of the 42,325 cases of early-onset dementia in the UK, 21,519 cases are in men while 20,806 are in women. Around 32,000 of the cases involve those aged 60 to 65, with 7,700 cases among those in their 50s, 2,010 cases among those in their 40s, and 707 cases among those in their 30s, the figures show.
 
While Alzheimer’s disease is the most common form of dementia among the elderly, in those under the age of 65, it represents just one in three cases. In some cases, there is a family history of early-onset Alzheimer’s disease.
 
Among younger people, the second most common cause is vascular dementia, which occurs when there are problems in the blood supply to the brain. One in five cases of dementia in the under 65s are caused by this.
 
Around one in ten cases of dementia in younger people are alcohol-related, and 10 per cent are caused by dementia with Lewy bodies, a build up of tiny protein deposits in the brain .
 
A further 12 per cent are caused by front-temporal dementia, which is a more common cause of dementia among those aged between 45 and 65 than among dementias in older people, and often relates to a family history of the disease. Rarer forms of dementia – linked to conditions such as Parkinson's disease, Huntington’s disease and Creutzfeldt-Jakob disease - also explain a higher proportion of dementias in younger people than they do in the elderly.
 
The report also forecasts that the number of people with early-onset dementia is set to rise by 20 per cent over the next four decades, with more than 50,000 cases expected by 2051.
 
Susan Hulme, from Camarthenshire, South Wales, was diagnosed with Alzheimer’s disease last year, at the age of 59. She said she had been struggling with memory problems for three years, which had been attributed to stress, or sinus problems.
 
When she visited her GP last year, and found herself unable to recall the reason for her visit, she was referred to a memory clinic, who made the diagnosis, and prescribed medication which can slow its impact.
 
Ms Hulme, a former civil servant, said: “In a way it felt like a relief to get the diagnosis, because I knew something was wrong for several years, I had been really struggling with my memory, and with a kind of fuzzy feeling that was worst in the mornings – but it was a real shock that it was Alzheimer’s disease, I thought that was something that only came with old age.”
 
She had already taken voluntary redundancy, after suffering what she had thought was stress.
 
Telling people about her diagnosis was one of the most difficult parts of coming to terms with the condition, she said, calling for more funding of services for younger people, to provide support.
 
“I don’t think most people realise this is something that could happen at this age. Telling my partner and my children was one of the most difficult things to do,” she said.
 
 
 
Saturday, May 25, 2013
 
 Brain homogenates from human tauopathies induce tau inclusions in mouse brain
 
 
 
 
Sunday, February 10, 2013
 
 Parkinson's Disease and Alpha Synuclein: Is Parkinson's Disease a Prion-Like Disorder?
 
 
 
 
 
 
Wednesday, May 16, 2012
 
 Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ?
 
Background
 
Alzheimer’s disease and Transmissible Spongiform Encephalopathy disease have both been around a long time, and was discovered in or around the same time frame, early 1900’s. Both diseases are incurable and debilitating brain disease, that are in the end, 100% fatal, with the incubation/clinical period of the Alzheimer’s disease being longer (most of the time) than the TSE prion disease. Symptoms are very similar, and pathology is very similar.
 
Methods
 
Through years of research, as a layperson, of peer review journals, transmission studies, and observations of loved ones and friends that have died from both Alzheimer’s and the TSE prion disease i.e. Heidenhain Variant Creutzfelt Jakob Disease CJD.
 
Results
 
I propose that Alzheimer’s is a TSE disease of low dose, slow, and long incubation disease, and that Alzheimer’s is Transmissible, and is a threat to the public via the many Iatrogenic routes and sources. It was said long ago that the only thing that disputes this, is Alzheimer’s disease transmissibility, or the lack of. The likelihood of many victims of Alzheimer’s disease from the many different Iatrogenic routes and modes of transmission as with the TSE prion disease.
 
Conclusions
 
There should be a Global Congressional Science round table event set up immediately to address these concerns from the many potential routes and sources of the TSE prion disease, including Alzheimer’s disease, and a emergency global doctrine put into effect to help combat the spread of Alzheimer’s disease via the medical, surgical, dental, tissue, and blood arena’s. All human and animal TSE prion disease, including Alzheimer’s should be made reportable in every state, and Internationally, WITH NO age restrictions. Until a proven method of decontamination and autoclaving is proven, and put forth in use universally, in all hospitals and medical, surgical arena’s, or the TSE prion agent will continue to spread. IF we wait until science and corporate politicians wait until politics lets science _prove_ this once and for all, and set forth regulations there from, we will all be exposed to the TSE Prion agents, if that has not happened already.
 
end...tss
 
SEE FULL TEXT AND SOURCE REFERENCES ;
 
Wednesday, May 16, 2012
 
Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ?
 
 
 Wednesday, September 21, 2011
 
 PrioNet Canada researchers in Vancouver confirm prion-like properties in Amyotrophic Lateral Sclerosis (ALS)
 
 
 
 
Wednesday, January 5, 2011
 
 ENLARGING SPECTRUM OF PRION-LIKE DISEASES Prusiner Colby et al 2011 Prions
 
 David W. Colby1,* and Stanley B. Prusiner1,2
 
 
 
 
Friday, September 3, 2010
 
Alzheimer's, Autism, Amyotrophic Lateral Sclerosis, Parkinson's, Prionoids, Prionpathy, Prionopathy, TSE
 
 
 
 
Ann N Y Acad Sci. 1982;396:131-43.
 
Alzheimer's disease and transmissible virus dementia (Creutzfeldt-Jakob disease).
 
Brown P, Salazar AM, Gibbs CJ Jr, Gajdusek DC.
 
Abstract
 
Ample justification exists on clinical, pathologic, and biologic grounds for considering a similar pathogenesis for AD and the spongiform virus encephalopathies. However, the crux of the comparison rests squarely on results of attempts to transmit AD to experimental animals, and these results have not as yet validated a common etiology. Investigations of the biologic similarities between AD and the spongiform virus encephalopathies proceed in several laboratories, and our own observation of inoculated animals will be continued in the hope that incubation periods for AD may be even longer than those of CJD.
 
 
CJD1/9 0185 Ref: 1M51A
 
IN STRICT CONFIDENCE
 
Dr McGovern From: Dr A Wight Date: 5 January 1993 Copies: Dr Metters Dr Skinner Dr Pickles Dr Morris Mr Murray
 
TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
 
1. CMO will wish to be aware that a meeting was held at DH yesterday, 4 January, to discuss the above findings. It was chaired by Professor Murray (Chairman of the MRC Co-ordinating Committee on Research in the Spongiform Encephalopathies in Man), and attended by relevant experts in the fields of Neurology, Neuropathology, molecular biology, amyloid biochemistry, and the spongiform encephalopathies, and by representatives of the MRC and AFRC. 2. Briefly, the meeting agreed that:
 
i) Dr Ridley et als findings of experimental induction of p amyloid in primates were valid, interesting and a significant advance in the understanding of neurodegenerative disorders;
 
ii) there were no immediate implications for the public health, and no further safeguards were thought to be necessary at present; and
 
iii) additional research was desirable, both epidemiological and at the molecular level. Possible avenues are being followed up by DH and the MRC, but the details will require further discussion. 93/01.05/4.1
 
 
BSE101/1 0136
 
IN CONFIDENCE
 
5 NOV 1992 CMO From: Dr J S Metters DCMO 4 November 1992
 
TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES
 
1. Thank you for showing me Diana Dunstan's letter. I am glad that MRC have recognized the public sensitivity of these findings and intend to report them in their proper context. This hopefully will avoid misunderstanding and possible distortion by the media to portray the results as having more greater significance than the findings so far justify.
 
2. Using a highly unusual route of transmission (intra-cerebral injection) the researchers have demonstrated the transmission of a pathological process from two cases one of severe Alzheimer's disease the other of Gerstmann-Straussler disease to marmosets. However they have not demonstrated the transmission of either clinical condition as the "animals were behaving normally when killed'. As the report emphasizes the unanswered question is whether the disease condition would have revealed itself if the marmosets had lived longer. They are planning further research to see if the conditions, as opposed to the partial pathological process, is transmissible. What are the implications for public health?
 
3. The route of transmission is very specific and in the natural state of things highly unusual. However it could be argued that the results reveal a potential risk, in that brain tissue from these two patients has been shown to transmit a pathological process. Should therefore brain tissue from such cases be regarded as potentially infective? Pathologists, morticians, neuro surgeons and those assisting at neuro surgical procedures and others coming into contact with "raw" human brain tissue could in theory be at risk. However, on a priori grounds given the highly specific route of transmission in these experiments that risk must be negligible if the usual precautions for handling brain tissue are observed.
 
92/11.4/1-1 BSE101/1 0137
 
4. The other dimension to consider is the public reaction. To some extent the GSS case demonstrates little more than the transmission of BSE to a pig by intra-cerebral injection. If other prion diseases can be transmitted in this way it is little surprise that some pathological findings observed in GSS were also transmissible to a marmoset. But the transmission of features of Alzheimer's pathology is a different matter, given the much greater frequency of this disease and raises the unanswered question whether some cases are the result of a transmissible prion. The only tenable public line will be that "more research is required" before that hypothesis could be evaluated. The possibility on a transmissible prion remains open. In the meantime MRC needs carefully to consider the range and sequence of studies needed to follow through from the preliminary observations in these two cases. Not a particularly comfortable message, but until we know more about the causation of Alzheimer's disease the total reassurance is not practical.
 
JS METTERS Room 509 Richmond House Pager No: 081-884 3344 Callsign: DOH 832 121/YdeS 92/11.4/1.2
 
 
 
BSE101/1 0136
 
IN CONFIDENCE
 
CMO
 
From: Dr J S Metters DCMO
 
4 November 1992
 
TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES
 
 
 
CJD1/9 0185
 
Ref: 1M51A
 
IN STRICT CONFIDENCE
 
From: Dr. A Wight Date: 5 January 1993
 
Copies:
 
Dr Metters Dr Skinner Dr Pickles Dr Morris Mr Murray
 
TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
 
 
Tuesday, July 1, 2014
 
Distinct synthetic Aβ prion strains producing different amyloid deposits in bigenic mice
 
 
Tuesday, November 26, 2013
 
Transmission of multiple system atrophy prions to transgenic mice
 
 
Tuesday, December 17, 2013
 
Alzheimer's Disease U.K. diagnosed by region in each of the last five years [179852]
 
 
 
TSS
 

Tuesday, July 1, 2014

Distinct synthetic Aβ prion strains producing different amyloid deposits in bigenic mice

Distinct synthetic Aβ prion strains producing different amyloid deposits in bigenic mice

 
Jan Stöhra,b, Carlo Condelloa, Joel C. Wattsa,b,1, Lillian Blocha, Abby Oehlerc, Mimi Nickd, Stephen J. DeArmonda,c, Kurt Gilesa,b, William F. DeGradod, and Stanley B. Prusinera,b,2 Author Affiliations

 
aInstitute for Neurodegenerative Diseases, Departments of bNeurology and cPathology, and dPharmaceutical Chemistry, University of California, San Francisco, CA 94143 Contributed by Stanley B. Prusiner, May 14, 2014 (sent for review April 15, 2014)

 
Abstract Authors & Info SI Metrics PDF PDF + SI Significance Alzheimer’s disease is the most common neurodegenerative disorder; it is a progressive dementia for which there is currently no effective therapeutic intervention. The brains of patients with Alzheimer’s disease exhibit numerous amyloid β (Aβ) amyloid plaques and tau-laden neurofibrillary tangles. Our studies show that synthetic Aβ peptides can form prions that infect mice and induce Aβ amyloid plaque pathology. Two different Aβ prion strains were produced from Aβ peptides. When injected into transgenic mice, one Aβ strain produced large plaques and the other strain induced small but more numerous plaques. Our findings may help to delineate the molecular pathogenesis of Alzheimer’s disease and the development of anti-Aβ prion therapeutics.

 
Abstract An increasing number of studies continue to show that the amyloid β (Aβ) peptide adopts an alternative conformation and acquires transmissibility; hence, it becomes a prion. Here, we report on the attributes of two strains of Aβ prions formed from synthetic Aβ peptides composed of either 40 or 42 residues. Modifying the conditions for Aβ polymerization increased both the protease resistance and prion infectivity compared with an earlier study. Approximately 150 d after intracerebral inoculation, both synthetic Aβ40 and Aβ42 prions produced a sustained rise in the bioluminescence imaging signal in the brains of bigenic Tg(APP23:Gfap-luc) mice, indicative of astrocytic gliosis. Pathological investigations showed that synthetic Aβ40 prions produced amyloid plaques containing both Aβ40 and Aβ42 in the brains of inoculated bigenic mice, whereas synthetic Aβ42 prions stimulated the formation of smaller, more numerous plaques composed predominantly of Aβ42. Synthetic Aβ40 preparations consisted of long straight fibrils; in contrast, the Aβ42 fibrils were much shorter. Addition of 3.47 mM (0.1%) SDS to the polymerization reaction produced Aβ42 fibrils that were indistinguishable from Aβ40 fibrils produced in the absence or presence of SDS. Moreover, the Aβ amyloid plaques in the brains of bigenic mice inoculated with Aβ42 prions prepared in the presence of SDS were similar to those found in mice that received Aβ40 prions. From these results, we conclude that the composition of Aβ plaques depends on the conformation of the inoculated Aβ polymers, and thus, these inocula represent distinct synthetic Aβ prion strains.

 
Alzheimer's disease in vitro neurodegenerative diseases Footnotes ↵1Present address: Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.

 

↵2To whom correspondence should be addressed. E-mail: stanley@ind.ucsf.edu. Author contributions: J.S., C.C., and S.B.P. designed research; J.S., C.C., J.C.W., L.B., A.O., and M.N. performed research; J.S., C.C., S.J.D., K.G., W.F.D., and S.B.P. analyzed data; and J.S. and S.B.P. wrote the paper.

 

The authors declare no conflict of interest.

 

This article contains supporting information online at

 

 

Prions causing neurodegeneration: A unifying etiology and the quest for therapeutics
 
Stanley B Prusiner University of California, Institute for Neurodegenerative Diseases; San Francisco, CA, USA
 
Mounting evidence argues that prions feature in the pathogenesis of many, if not all, neurodegenerative diseases. Such disorders include Alzheimer’s, Parkinson’s, Lou Gehrig’s and Creutzfeldt-Jakob diseases as well as the frontotemporal dementias. In each of these illnesses, aberrant forms of a particular protein accumulate as pathological deposits referred to as amyloid plaques, neurofibrillary tangles, Lewy bodies, as well as glial cytoplasmic and/or nuclear inclusions. The heritable forms of the neurodegenerative diseases are often caused by mutations in the genes encoding the mutant, prion proteins that accumulate in the CNS of patients with these fatal disorders. The late onset of the inherited neurodegenerative diseases seems likely to be explained by the protein quality control systems being less efficient in older neurons and thus, more permissive for prion accumulation. To date, there is not a single drug that halts or even slows one neurodegenerative disease.
 
References
 
Prusiner SB. Biology and genetics of prions causing neurodegeneration. Annu Rev Genet 2013; 47:601-23; PMID:24274755; http://dx.doi.org/10.1146/ annurev-genet-110711-155524
 
Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 2013; 501:45-51; PMID:24005412; http://dx.doi. org/10.1038/nature12481
 
 
 
Wednesday, April 2, 2014
 
Do prions cause Parkinson disease?: The evidence accumulates (pages 331–333)

 
http://betaamyloidcjd.blogspot.com/2014/04/do-prions-cause-parkinson-disease.html

 

Tuesday, November 26, 2013

 

Transmission of multiple system atrophy prions to transgenic mice

 


 


 


 

 

 

TSS

Wednesday, April 2, 2014

Do prions cause Parkinson disease?: The evidence accumulates (pages 331–333)



C. Warren Olanow

Article first published online: 24 FEB 2014 | DOI: 10.1002/ana.24098
 
“Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning.” –Winston Churchill
 
snip...
 
A body of evidence now suggest that Parkinson disease (PD) may also be a prion disorder, and that z-synuclein may be a prion...
 
 
 
 
 
 
Sunday, February 10, 2013
 
Parkinson's Disease and Alpha Synuclein: Is Parkinson's Disease a Prion-Like Disorder?
 
 
 
Wednesday, September 21, 2011
 
PrioNet Canada researchers in Vancouver confirm prion-like properties in Amyotrophic Lateral Sclerosis (ALS)
 
 
 
Wednesday, January 5, 2011
 
ENLARGING SPECTRUM OF PRION-LIKE DISEASES Prusiner Colby et al 2011 Prions
 
David W. Colby1,* and Stanley B. Prusiner1,2
 
 
 
 
Friday, September 3, 2010
 
Alzheimer's, Autism, Amyotrophic Lateral Sclerosis, Parkinson's, Prionoids, Prionpathy, Prionopathy, TSE
 
 
 
 
Wednesday, May 16, 2012
 
Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ?
 
Background
 
Alzheimer’s disease and Transmissible Spongiform Encephalopathy disease have both been around a long time, and was discovered in or around the same time frame, early 1900’s. Both diseases are incurable and debilitating brain disease, that are in the end, 100% fatal, with the incubation/clinical period of the Alzheimer’s disease being longer (most of the time) than the TSE prion disease. Symptoms are very similar, and pathology is very similar.
 
Methods
 
Through years of research, as a layperson, of peer review journals, transmission studies, and observations of loved ones and friends that have died from both Alzheimer’s and the TSE prion disease i.e. Heidenhain Variant Creutzfelt Jakob Disease CJD.
 
Results
 
I propose that Alzheimer’s is a TSE disease of low dose, slow, and long incubation disease, and that Alzheimer’s is Transmissible, and is a threat to the public via the many Iatrogenic routes and sources. It was said long ago that the only thing that disputes this, is Alzheimer’s disease transmissibility, or the lack of. The likelihood of many victims of Alzheimer’s disease from the many different Iatrogenic routes and modes of transmission as with the TSE prion disease.
 
Conclusions
 
There should be a Global Congressional Science round table event set up immediately to address these concerns from the many potential routes and sources of the TSE prion disease, including Alzheimer’s disease, and a emergency global doctrine put into effect to help combat the spread of Alzheimer’s disease via the medical, surgical, dental, tissue, and blood arena’s. All human and animal TSE prion disease, including Alzheimer’s should be made reportable in every state, and Internationally, WITH NO age restrictions. Until a proven method of decontamination and autoclaving is proven, and put forth in use universally, in all hospitals and medical, surgical arena’s, or the TSE prion agent will continue to spread. IF we wait until science and corporate politicians wait until politics lets science _prove_ this once and for all, and set forth regulations there from, we will all be exposed to the TSE Prion agents, if that has not happened already.
 
end...tss
 
SEE FULL TEXT AND SOURCE REFERENCES ;
 
Wednesday, May 16, 2012
 
Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ?
 
Proposal ID: 29403
 
 
Tuesday, November 26, 2013
 
Transmission of multiple system atrophy prions to transgenic mice
 
 
 
 
 
Ann N Y Acad Sci. 1982;396:131-43.
 
Alzheimer's disease and transmissible virus dementia (Creutzfeldt-Jakob disease).
 
Brown P, Salazar AM, Gibbs CJ Jr, Gajdusek DC.
 
Abstract
 
Ample justification exists on clinical, pathologic, and biologic grounds for considering a similar pathogenesis for AD and the spongiform virus encephalopathies. However, the crux of the comparison rests squarely on results of attempts to transmit AD to experimental animals, and these results have not as yet validated a common etiology. Investigations of the biologic similarities between AD and the spongiform virus encephalopathies proceed in several laboratories, and our own observation of inoculated animals will be continued in the hope that incubation periods for AD may be even longer than those of CJD.
 
 
 
CJD1/9 0185 Ref: 1M51A
 
IN STRICT CONFIDENCE
 
Dr McGovern From: Dr A Wight Date: 5 January 1993 Copies: Dr Metters Dr Skinner Dr Pickles Dr Morris Mr Murray
 
TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
 
1. CMO will wish to be aware that a meeting was held at DH yesterday, 4 January, to discuss the above findings. It was chaired by Professor Murray (Chairman of the MRC Co-ordinating Committee on Research in the Spongiform Encephalopathies in Man), and attended by relevant experts in the fields of Neurology, Neuropathology, molecular biology, amyloid biochemistry, and the spongiform encephalopathies, and by representatives of the MRC and AFRC. 2. Briefly, the meeting agreed that:
 
i) Dr Ridley et als findings of experimental induction of p amyloid in primates were valid, interesting and a significant advance in the understanding of neurodegenerative disorders;
 
ii) there were no immediate implications for the public health, and no further safeguards were thought to be necessary at present; and
 
iii) additional research was desirable, both epidemiological and at the molecular level. Possible avenues are being followed up by DH and the MRC, but the details will require further discussion. 93/01.05/4.1
 
 
 
 
BSE101/1 0136
 
IN CONFIDENCE
 
5 NOV 1992 CMO From: Dr J S Metters DCMO 4 November 1992
 
TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES
 
1. Thank you for showing me Diana Dunstan's letter. I am glad that MRC have recognized the public sensitivity of these findings and intend to report them in their proper context. This hopefully will avoid misunderstanding and possible distortion by the media to portray the results as having more greater significance than the findings so far justify.
 
2. Using a highly unusual route of transmission (intra-cerebral injection) the researchers have demonstrated the transmission of a pathological process from two cases one of severe Alzheimer's disease the other of Gerstmann-Straussler disease to marmosets. However they have not demonstrated the transmission of either clinical condition as the "animals were behaving normally when killed'. As the report emphasizes the unanswered question is whether the disease condition would have revealed itself if the marmosets had lived longer. They are planning further research to see if the conditions, as opposed to the partial pathological process, is transmissible. What are the implications for public health?
 
3. The route of transmission is very specific and in the natural state of things highly unusual. However it could be argued that the results reveal a potential risk, in that brain tissue from these two patients has been shown to transmit a pathological process. Should therefore brain tissue from such cases be regarded as potentially infective? Pathologists, morticians, neuro surgeons and those assisting at neuro surgical procedures and others coming into contact with "raw" human brain tissue could in theory be at risk. However, on a priori grounds given the highly specific route of transmission in these experiments that risk must be negligible if the usual precautions for handling brain tissue are observed.
 
92/11.4/1-1 BSE101/1 0137
 
4. The other dimension to consider is the public reaction. To some extent the GSS case demonstrates little more than the transmission of BSE to a pig by intra-cerebral injection. If other prion diseases can be transmitted in this way it is little surprise that some pathological findings observed in GSS were also transmissible to a marmoset. But the transmission of features of Alzheimer's pathology is a different matter, given the much greater frequency of this disease and raises the unanswered question whether some cases are the result of a transmissible prion. The only tenable public line will be that "more research is required" before that hypothesis could be evaluated. The possibility on a transmissible prion remains open. In the meantime MRC needs carefully to consider the range and sequence of studies needed to follow through from the preliminary observations in these two cases. Not a particularly comfortable message, but until we know more about the causation of Alzheimer's disease the total reassurance is not practical.
 
JS METTERS Room 509 Richmond House Pager No: 081-884 3344 Callsign: DOH 832 121/YdeS 92/11.4/1.2
 
 
 
 
BSE101/1 0136
 
IN CONFIDENCE
 
CMO
 
From: Dr J S Metters DCMO
 
4 November 1992
 
TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES
 
 
 
CJD1/9 0185
 
Ref: 1M51A
 
IN STRICT CONFIDENCE
 
From: Dr. A Wight Date: 5 January 1993
 
Copies:
 
Dr Metters Dr Skinner Dr Pickles Dr Morris Mr Murray
 
TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
 
 
 
IATROGENIC
 
 
all iatrogenic cjd is, is sporadic CJD, until route and source of the iatrogenic event that took place, is detected, documented, placed in the academic domain as fact, and recorded, which happens very seldom due to a lot of factors, besides the incubation period, and that be mainly industry. kind of like asbestos and tobacco and the industry there from, they knew in the early 1900’s that they both were killing, and they both had long incubation, and somebody chose not to do anything about if for decades and decades. kind of like what we have here with the TSE prion disease. $$$
 
> In 12 of 15 hospitals with neurosurgical incidents, a decision was made to notify patients of their potential exposure.
 
SO, X number of patients, from 3 hospitals, where
 
''exposure to potentially CJD-contaminated instruments ''
 
took place on these patients, the final decision NOT to tell those folks about the potential exposure to the CJD TSE prion
 
insane, thus, the TSE prion agent continues to spread. ...please see further comments here ;
 
 
 
Tuesday, April 01, 2014
 
Questions linger in U.S. CJD cases 2005, and still do in 2014
 
 
 
 
TSS

Wednesday, March 12, 2014

Plasma phospholipids identify antecedent memory impairment in older adults

Plasma phospholipids identify antecedent memory impairment in older adults

 

Mark Mapstone,1 Amrita K Cheema,2, 3 Massimo S Fiandaca,4, 5 Xiaogang Zhong,6 Timothy R Mhyre,5 Linda H MacArthur,5 William J Hall,7 Susan G Fisher,8, 14 Derick R Peterson,9 James M Haley,10 Michael D Nazar,11 Steven A Rich,12 Dan J Berlau,13, 14 Carrie B Peltz,13 Ming T Tan,6 Claudia H Kawas13 & Howard J Federoff4, 5 Affiliations Contributions Corresponding author Journal name: Nature Medicine Year published: (2014) DOI: doi:10.1038/nm.3466 Received 27 August 2013 Accepted 09 January 2014 Published online 09 March 2014 Article tools Citation Reprints Rights & permissions Article metrics

 

Alzheimer's disease causes a progressive dementia that currently affects over 35 million individuals worldwide and is expected to affect 115 million by 2050 (ref. 1). There are no cures or disease-modifying therapies, and this may be due to our inability to detect the disease before it has progressed to produce evident memory loss and functional decline. Biomarkers of preclinical disease will be critical to the development of disease-modifying or even preventative therapies2. Unfortunately, current biomarkers for early disease, including cerebrospinal fluid tau and amyloid-β levels3, structural and functional magnetic resonance imaging4 and the recent use of brain amyloid imaging5 or inflammaging6, are limited because they are either invasive, time-consuming or expensive. Blood-based biomarkers may be a more attractive option, but none can currently detect preclinical Alzheimer's disease with the required sensitivity and specificity7. Herein, we describe our lipidomic approach to detecting preclinical Alzheimer's disease in a group of cognitively normal older adults. We discovered and validated a set of ten lipids from peripheral blood that predicted phenoconversion to either amnestic mild cognitive impairment or Alzheimer's disease within a 2–3 year timeframe with over 90% accuracy. This biomarker panel, reflecting cell membrane integrity, may be sensitive to early neurodegeneration of preclinical Alzheimer's disease.

 

At a glance

 


 

Biomarkers could predict Alzheimer's before it starts Study identifies potential blood test for cognitive decline.

 

Alison Abbott 09 March 2014

 

A simple blood test has the potential to predict whether a healthy person will develop symptoms of dementia within two or three years. If larger studies uphold the results, the test could fill a major gap in strategies to combat brain degeneration, which is thought to show symptoms only at a stage when it too late to treat effectively.

 

The test was identified in a preliminary study involving 525 people aged over 70. The work identified a set of ten lipid metabolites in blood plasma that distinguished with 90% accuracy between people who would remain cognitively healthy from those who would go on to show signs of cognitive impairment.

 

“These findings are potentially very exciting,” says Simon Lovestone, a neuroscientist at the University of Oxford, UK, and a coordinator of a major European public-private partnership seeking biomarkers for Alzheimer's. But he points out that only 28 participants developed symptoms similar to those of Alzheimer's disease during the latest work. “So the findings need to be confirmed in independent and larger studies.”

 

There is not yet a good treatment for Alzheimer’s disease, which affects 35 million people worldwide. Several promising therapies have been tested in clinical trials over the last few years, but all have failed. However, those trials involved people who had already developed symptoms. Many neuroscientists fear that any benefits of a treatment would be missed in such a study, because it could be impossible to halt the disease once it has manifested. “We desperately need biomarkers which would allow patients to be identified — and recruited into trials — before their symptoms begin,” says Lovestone.

 

In the blood The latest study, which is published today in Nature Medicine1, was led by neurologist Howard Federoff of Georgetown University Medical Center in Washington DC. He and his colleagues tested the participants' cognitive and memory skills, and took blood samples from them, around once a year for five years. They used mass spectrometry to analyse the blood plasma of 53 participants with mild cognitive impairment or Alzheimer’s disease, including 18 who developed symptoms during the study, and 53 who remained cognitively healthy. They found ten phospholipids that were present at consistently lower levels in the blood of most people who had, or went on to develop, cognitive impairment. The team validated the results in a set of 41 further participants.

 

“We don’t really know the source of the ten molecules, though we know they are generally present in cell membranes,” says Federoff. But he proposes that concentrations of the phospholipids might somehow reflect the breakdown of neural-cell membranes.

 

Related stories Alzheimer’s test may undermine drug trials Disrupted sleep may predict Alzheimer’s Alzheimer's blood test 'most accurate' so far More related stories

 

Federoff emphasizes that his results will have to be validated in independent labs, and in much larger studies: “We also have to look at different age groups and a more diverse racial mix, and we need longer study periods.”

 

Ease of use Monique Breteler, head of epidemiology at the German Centre for Neurodegenerative Diseases in Bonn, says that a test based on Federoff’s biomarker set would be advantageously simple. “If you are to screen the population for those destined to get Alzheimer’s, and who may therefore benefit from any treatment that is developed,” she says, “then you need to use material you can access easily, like blood.”

 

Some groups are looking for molecules present in spinal fluid or biomarkers based on brain imaging — procedures that are not practical for large-scale use, she adds.

 

Other research has found differences in patterns of other molecules in the blood of people with Alzheimer’s and healthy controls. But such case–control studies fail to take into account normal variation between individuals, says Breteler. “In general it is better to do a prospective study, like this one, so you can follow how measurements in each individual change as their life progresses.”

 

Journal name: Nature DOI: doi:10.1038/nature.2014.14834 References

 


 

Tuesday, December 17, 2013

 

Alzheimer's Disease U.K. diagnosed by region in each of the last five years [179852]

 


 

Tuesday, March 19, 2013

 

Alzheimer's Association 2013 Alzheimer's Disease Facts and Figures Today, an American develops Alzheimer's disease every 68 seconds. In 2050, an American will develop the disease every 33 seconds.

 

An estimated 5.2 million Americans of all ages have Alzheimer's disease in 2013. This includes an estimated 5 million people age 65 and older and approximately 200,000 individuals younger than age 65 who have younger-onset Alzheimer's.

 


 

Tuesday, May 21, 2013

 

IS ALZHEIMER’S DISEASE A PRION DISEASE? the possible secondary transmission by blood transfusion are posed http://betaamyloidcjd.blogspot.com/2013/05/is-alzheimers-disease-prion-disease.html

 

Wednesday, May 16, 2012

 

Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ?

 

Background

 

Alzheimer’s disease and Transmissible Spongiform Encephalopathy disease have both been around a long time, and was discovered in or around the same time frame, early 1900’s. Both diseases are incurable and debilitating brain disease, that are in the end, 100% fatal, with the incubation/clinical period of the Alzheimer’s disease being longer (most of the time) than the TSE prion disease. Symptoms are very similar, and pathology is very similar.

 

Methods

 

Through years of research, as a layperson, of peer review journals, transmission studies, and observations of loved ones and friends that have died from both Alzheimer’s and the TSE prion disease i.e. Heidenhain Variant Creutzfelt Jakob Disease CJD.

 

Results

 

I propose that Alzheimer’s is a TSE disease of low dose, slow, and long incubation disease, and that Alzheimer’s is Transmissible, and is a threat to the public via the many Iatrogenic routes and sources. It was said long ago that the only thing that disputes this, is Alzheimer’s disease transmissibility, or the lack of. The likelihood of many victims of Alzheimer’s disease from the many different Iatrogenic routes and modes of transmission as with the TSE prion disease.

 

Conclusions

 

There should be a Global Congressional Science round table event set up immediately to address these concerns from the many potential routes and sources of the TSE prion disease, including Alzheimer’s disease, and a emergency global doctrine put into effect to help combat the spread of Alzheimer’s disease via the medical, surgical, dental, tissue, and blood arena’s. All human and animal TSE prion disease, including Alzheimer’s should be made reportable in every state, and Internationally, WITH NO age restrictions. Until a proven method of decontamination and autoclaving is proven, and put forth in use universally, in all hospitals and medical, surgical arena’s, or the TSE prion agent will continue to spread. IF we wait until science and corporate politicians wait until politics lets science _prove_ this once and for all, and set forth regulations there from, we will all be exposed to the TSE Prion agents, if that has not happened already.

 

end...tss

 

SEE FULL TEXT AND SOURCE REFERENCES ;

 

Wednesday, May 16, 2012

 

Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ?

 

Proposal ID: 29403

 


 

Ann N Y Acad Sci. 1982;396:131-43.

 

Alzheimer's disease and transmissible virus dementia (Creutzfeldt-Jakob disease).

 

Brown P, Salazar AM, Gibbs CJ Jr, Gajdusek DC.

 

Abstract

 

Ample justification exists on clinical, pathologic, and biologic grounds for considering a similar pathogenesis for AD and the spongiform virus encephalopathies. However, the crux of the comparison rests squarely on results of attempts to transmit AD to experimental animals, and these results have not as yet validated a common etiology. Investigations of the biologic similarities between AD and the spongiform virus encephalopathies proceed in several laboratories, and our own observation of inoculated animals will be continued in the hope that incubation periods for AD may be even longer than those of CJD.

 


 

CJD1/9 0185 Ref: 1M51A

 

IN STRICT CONFIDENCE

 

Dr McGovern From: Dr A Wight Date: 5 January 1993 Copies: Dr Metters Dr Skinner Dr Pickles Dr Morris Mr Murray

 

TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES

 

1. CMO will wish to be aware that a meeting was held at DH yesterday, 4 January, to discuss the above findings. It was chaired by Professor Murray (Chairman of the MRC Co-ordinating Committee on Research in the Spongiform Encephalopathies in Man), and attended by relevant experts in the fields of Neurology, Neuropathology, molecular biology, amyloid biochemistry, and the spongiform encephalopathies, and by representatives of the MRC and AFRC. 2. Briefly, the meeting agreed that:

 

i) Dr Ridley et als findings of experimental induction of p amyloid in primates were valid, interesting and a significant advance in the understanding of neurodegenerative disorders;

 

ii) there were no immediate implications for the public health, and no further safeguards were thought to be necessary at present; and

 

iii) additional research was desirable, both epidemiological and at the molecular level. Possible avenues are being followed up by DH and the MRC, but the details will require further discussion. 93/01.05/4.1

 


 

BSE101/1 0136

 

IN CONFIDENCE

 

5 NOV 1992 CMO From: Dr J S Metters DCMO 4 November 1992

 

TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES

 

1. Thank you for showing me Diana Dunstan's letter. I am glad that MRC have recognized the public sensitivity of these findings and intend to report them in their proper context. This hopefully will avoid misunderstanding and possible distortion by the media to portray the results as having more greater significance than the findings so far justify.

 

2. Using a highly unusual route of transmission (intra-cerebral injection) the researchers have demonstrated the transmission of a pathological process from two cases one of severe Alzheimer's disease the other of Gerstmann-Straussler disease to marmosets. However they have not demonstrated the transmission of either clinical condition as the "animals were behaving normally when killed'. As the report emphasizes the unanswered question is whether the disease condition would have revealed itself if the marmosets had lived longer. They are planning further research to see if the conditions, as opposed to the partial pathological process, is transmissible. What are the implications for public health?

 

3. The route of transmission is very specific and in the natural state of things highly unusual. However it could be argued that the results reveal a potential risk, in that brain tissue from these two patients has been shown to transmit a pathological process. Should therefore brain tissue from such cases be regarded as potentially infective? Pathologists, morticians, neuro surgeons and those assisting at neuro surgical procedures and others coming into contact with "raw" human brain tissue could in theory be at risk. However, on a priori grounds given the highly specific route of transmission in these experiments that risk must be negligible if the usual precautions for handling brain tissue are observed.

 

92/11.4/1-1 BSE101/1 0137

 

4. The other dimension to consider is the public reaction. To some extent the GSS case demonstrates little more than the transmission of BSE to a pig by intra-cerebral injection. If other prion diseases can be transmitted in this way it is little surprise that some pathological findings observed in GSS were also transmissible to a marmoset. But the transmission of features of Alzheimer's pathology is a different matter, given the much greater frequency of this disease and raises the unanswered question whether some cases are the result of a transmissible prion. The only tenable public line will be that "more research is required" before that hypothesis could be evaluated. The possibility on a transmissible prion remains open. In the meantime MRC needs carefully to consider the range and sequence of studies needed to follow through from the preliminary observations in these two cases. Not a particularly comfortable message, but until we know more about the causation of Alzheimer's disease the total reassurance is not practical.

 

JS METTERS Room 509 Richmond House Pager No: 081-884 3344 Callsign: DOH 832 121/YdeS 92/11.4/1.2

 


 

BSE101/1 0136

 

IN CONFIDENCE

 

CMO

 

From: Dr J S Metters DCMO

 

4 November 1992

 

TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES

 


 

CJD1/9 0185

 

Ref: 1M51A

 

IN STRICT CONFIDENCE

 

From: Dr. A Wight Date: 5 January 1993

 

Copies:

 

Dr Metters Dr Skinner Dr Pickles Dr Morris Mr Murray

 

TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES

 


 

 Regarding Alzheimer's disease

 

(note the substantial increase on a yearly basis)

 


 


 

snip... BSE STANDING COMMITTEE – Dr. C Gibbs 12 13 March 1990

 

The pathogenesis of these diseases was compared to Alzheimer's disease at a molecular level...

 

snip...

 

image

 

snip...

 


 


 

And NONE of this is relevant to BSE?

 

There is also the matter whether the spectrum of ''prion disease'' is wider than that recognized at present.

 


 


 

snip...

 

 image

 

 Human BSE

 

snip...

 

These are not relevant to any possible human hazard from BSE nor to the much more common dementia, Alzheimers.

 

snip...

 


 


 

CREUTZFELDT-JAKOB DISEASE T.S.E. PRION U.K. UPDATE As at 3rd February 2014

 

PLEASE SEE the steady rise in sporadic CJD cases, and the rise of VPSPr, not included in the figures, but at the bottom. sporadic CJD’s, the silence is deafening...$

 

CREUTZFELDT-JAKOB DISEASE IN THE UK (By Calendar Year)

 

REFERRALS OF SUSPECT CJD DEATHS OF DEFINITE AND PROBABLE CJD

 

Year Referrals Year Sporadic1 Iatrogenic Genetic2 vCJD Total Deaths

 

1990 [53]† 1990 28 5 0 - 33

 

1991 75 1991 32 1 3 - 36

 

1992 96 1992 45 2 6 - 53

 

1993 79 1993 36 4 7 - 47

 

1994 119 1994 54 1 8 - 63

 

1995 87 1995 35 4 5 3 47

 

1996 133 1996 40 4 6 10 60

 

1997 163 1997 59 6 6 10 81

 

1998 155 1998 64 3 5 18 90

 

1999 170 1999 62 6 2 15 85

 

2000 178 2000 50 1 3 28 82

 

2001 179 2001 58 4 6 20 88

 

2002 164 2002 73 0 5 17 95

 

2003 162 2003 79 5 6 18 108

 

2004 114 2004 50 2 6 9 67

 

2005 124 2005 67 4 13 5 89

 

2006 112 2006 68 1 9 5 83

 

2007 119 2007 64 2 10 5 81

 

2008 150 2008 86 5 5 2 98

 

2009 153 2009 80 2 8 3 93

 

2010 150 2010 85 3 7 3 98

 

2011 157 2011 90 3 14 5 112

 

2012 125 2012 92 5 11 0 108

 

2013 145 2013 85 2 6 1 94

 

2014* 6 2014 9 0 0 0 9

 

Total Referrals 3168 Total Deaths 1491 75 157 177 1900

 

† Referral figure for 1990 is from 1 May onwards * As at 3rd February 2014

 

Summary of vCJD cases

 

Deaths

 

Deaths from definite vCJD (confirmed): 122

 

Deaths from probable vCJD (without neuropathological confirmation): 55

 

Deaths from probable vCJD (neuropathological confirmation pending): 0

 

Number of deaths from definite or probable vCJD (as above): 177

 

Alive

 

Number of definite/probable vCJD cases still alive: 0

 

Total number of definite or probable vCJD (dead and alive): 177

 

1 There are in addition a total of 9 cases of VPSPr (death in 1997(1 case), 2004(1), 2006(1), 2008(2), 2012(4)) not included in the above figures.

 

2 includes all genetic prion disease, including GSS.

 


 

 ***1 There are in addition a total of 9 cases of VPSPr (death in 1997(1 case), 2004(1), 2006(1), 2008(2), 2012(4)) not included in the above figures.***

 

see steady rise of the sporadic cjd’s, from 28 cases documented in 1990, to a record high of 92 cases in 2012, with VPSPr slowly gaining numbers as well, with 4 cases in 2012.

 

more spontaneous happenstance of sporadic bad luck I suppose $

 

still pondering. ...TSS

 

Monday, February 03, 2014

 

CREUTZFELDT-JAKOB DISEASE T.S.E. PRION U.K. UPDATE As at 3rd February 2014

 


 

Tuesday, November 26, 2013

 

Transmission of multiple system atrophy prions to transgenic mice

 


 

Letters

 

JAMA. 2001;285(6):733-734. doi: 10.1001/jama.285.6.733

 

Diagnosis and Reporting of Creutzfeldt-Jakob Disease

 

Terry S. Singeltary, Sr Bacliff, Tex

 

Since this article does not have an abstract, we have provided the first 150 words of the full text.

 

KEYWORDS: creutzfeldt-jakob disease, diagnosis.

 

To the Editor:

 

In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.

 

References 1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323.

 


 

14th ICID International Scientific Exchange Brochure -

 

Final Abstract Number: ISE.114

 

Session: International Scientific Exchange

 

Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009

 

T. Singeltary

 

Bacliff, TX, USA

 

Background:

 

An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.

 

Methods:

 

12 years independent research of available data

 

Results:

 

I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.

 

Conclusion:

 

I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.

 


 

CJD Singeltary submission to PLOS ;

 

No competing interests declared.

 

see full text ;

 


 


 


 

From: TSS

 

Subject: CJD or Alzheimer's, THE PA STUDY...

 

full text Date: May 7, 2001 at 10:24 am PST

 

Diagnosis of dementia: Clinicopathologic correlations

 

Francois Boller, MD, PhD; Oscar L. Lopez, MD; and John Moossy, MD

 

Article abstract--Based on 54 demented patients consecutively autopsied at the University of Pittsburgh, we studied the accuracy of clinicians in predicting the pathologic diagnosis. Thirty-nine patients (72.2%) had Alzheimer's disease, while 15 (27.7%) had other CNS diseases (four multi-infarct dementia; three Creutzfeldt-Jakob disease; two thalamic and subcortical gliosis; three Parkinson's disease; one progressive supranuclear palsy; one Huntington's disease; and one unclassified). Two neurologists independently reviewed the clinical records of each patient without knowledge of the patient's identity or clinical or pathologic diagnoses; each clinician reached a clinical diagnosis based on criteria derived from those of the NINCDS/ADRDA. In 34 (63 %) cases both clinicians were correct, in nine (17%) one was correct, and in 11 (20%) neither was correct. These results show that in patients with a clinical diagnosis of dementia, the etiology cannot be accurately predicted during life.

 

NEUROLOGY 1989;39:76-79

 

Several recent papers and reports have addressed the problem of improving the clinician's ability to diagnose dementia. Notable among those reports are the diagnostic criteria for dementia of the American Psychiatric Association, known as DSM III,1 as well as the clinical and neuropathologic criteria for the diagnosis of Alzheimer's disease (AD).2,3 Other researchers have published guidelines for the differentiation of various types of dementia4 and for antemortem predictions about the neuropathologic findings of demented patients.5

 

Most studies on the accuracy of clinical diagnosis in patients with dementia, especially AD, have used clinicopathologic correlation,6-15 and have found a percentage of accuracy ranging from 43% to 87%. Two recent reports, however,16,17 have claimed an accuracy of 100%. These two reports are based on relatively small series and have consisted of very highly selected patient samples. In our own recent experience, several cases of dementia have yielded unexpected neuropathologic findings,18 and we hypothesized that, in larger series, there would be a significant number of discrepancies between clinical diagnoses and autopsy findings. The present paper reviews the neuropathologic diagnosis of 54 demented patients who were autopsied consecutively at the University of Pittsburgh over a 7-year period, and reports the ability of clinicians to predict autopsy findings.

 

Material and methods. We independently reviewed the pathologic data and clinical records of 54 consecutive patients who had had an autopsy at the University of Pittsburgh (Presbyterian University Hospital [PUH] and the Pittsburgh (University Drive) Veterans Administration Medical Center [VAMC]), between 1980 and 1987.

 

The 54 cases included all those where dementia was diagnosed clinically but for which an obvious etiology, such as neoplasm, trauma, major vascular lesions, or clinically evident infection had not been found. The brains, evaluated by the Division of Neuropathology of the University of Pittsburgh, were obtained from patients cared for in different settings at their time of death.

 

On the basis of the amount of information available in each case, we divided the patients into three groups. Group 1 included 12 subjects who had been followed for a minimum of 1 year by the Alzheimer Disease Research Center (ADRC) of the University of Pittsburgh. ADRC evaluations include several visits and neurologic and neuropsychological testing as well as repeated laboratory tests, EEG, and CT.19,20

 

Group 2 included 28 patients who had been seen in the Neurology Service of PUH, of the VAMC, or in geriatric or psychiatric facilities of the University of Pittsburgh or at Western Psychiatric Institute and Clinic. All patients were personally evaluated by a neurologist and received a work-up to elucidate the etiology of their dementia.

 

Group 3 included 14 patients seen in other institutions; in most cases, they had also been seen by a neurologist and had had laboratory studies that included CT of the head. In three of the 14 cases, however, the information could be gathered only from the clinical summary found in the autopsy records.

 

Many of these subjects were referred for autopsy to the ADRC because of a public education campaign that encourages families to seek an autopsy for their relatives with dementia.

 

Pathologic data. All brains were removed by a neuropathologist as the first procedure of the autopsy at postmortem intervals of between 4 and 12 hours. The unfixed brain was weighed and the brainstem and cerebellum were separated by intercollicular section. The cerebral hemispheres were sectioned at 1-cm intervals and placed on a glass surface cooled by ice to prevent adhesion of the tissue to the cutting surface. The brainstem and cerebellum were sectioned in the transverse plane at 6-mm intervals. Brain sections were fixed in 10% buffered formalin. Selected tissue blocks for light microscopy were obtained from sections corresponding as exactly as possible to a set of predetermined areas used for processing brains for the ADRC protocol; additional details of the neuropathologic protocol have been previously published.18,21 Following standard tissue processing and paraffin embedding, 8-um-thick sections stained with hematoxylin and eosin and with the Bielschowsky ammoniacal silver nitrate impregnation were evaluted. Additional stains were used when indicated by the survey stains, including the Bielschowsky silver technique as previously reported.21

 

Clinical data. The medical history, as well as the results of examinations and laboratory tests, were obtained from the medical records libraries of the institutions where the patient had been followed and had died. We supplemented these data, when appropriate, with a personal or telephone interview with the relatives.

 

One neurologist (O.L.L.) recorded the information to be evaluated on two forms. The first form included sex, age, handedness, age at onset, age at death, course and duration of the disease, education, family history, EEG, CT, NMR, medical history, and physical examinationas well as examination of blood and CSF for factors that could affect memory and other cognitive functions. The form also listed the results of neuropsychological assessment, and the characteristics and course of psychiatric and neurologic symptoms. The form provided details on the presence, nature, and course of cognitive deficits and neurologic signs. The second form was a 26-item checklist derived from the NINCDS-ADRDA Work Group Criteria for probable Alzheimer's disease.2 The forms did not include the patient's identity, the institution where they had been evaluated, the clinical diagnosis, or the pathologic findings.

 

Each form was reviewed independently by two other neurologists (F.B. and J.M.), who were asked to provide a clinical diagnosis. In cases of probable or possible AD, the two neurologists followed the diagnostic criteria of the NINCDS/ ADRDA work group.2

 

The results were tabulated on a summary sheet filled out after the two neurologists had provided their diagnosis on each case. The sheet included the diagnosis reached by the two neurologists and the diagnosis resulting from the autopsy.

 

Table 1. Pathologic diagnosis in 54 patients with dementia

 

N %

 

Alzheimer's disease alone 34 62.9

 

Alzheimer's disease and 2 3.7 Parkinsons's disease

 

Alzheimer's disease with 2 3.7 multi-infarct dementia

 

Alzheimer's disease with amyotrophic lateral sclerosis 39 72.2

 

Total Alzheimers disease 39 72.2

 

Multi-infarct dementia 4 7.4

 

Multi-infarct dementa 1 1.8 with Parkinson's disease

 

Parkinson's disease 2 3.7

 

Progressive subcortical gliosis 2 3.7

 

Creutzfeldt-Jakob disease 3 5.5

 

Progressive supranuclear palsy 1 1.8

 

Huntington's disease 1 1.8

 

Unclassified 1 1.8

 

Total other disease 15 27.7

 

Total all cases 54

 

Table 2. Clinical diagnosis

 

Clinical diagnosis Clinician #1 --- #2

 

Probable AD 29 21

 

Probable AD and MID 3 0

 

Probable AD and thyroid disease 1 2

 

Probable AD and PD 3 1

 

Probable AD and ALS 1 0

 

Probable AD and 0 1 olivopontocerebellar degeneration

 

Total probable AD 37 25 (68.5%) (46.2%)

 

Possible AD 3 2

 

Possible AD and MID 2 2

 

Possible AD and alcoholism 0 1

 

Possible AD and depression 1 0

 

Possible and thyroid disease 0 3

 

Possible AD and traumatic 1 2 encephalopathy

 

Possible AD and PD 3 6

 

Total Possible AD 10 16 (18.5%) (29.6%)

 

Atypical AD 0 1

 

Atuypical AD and MID 0 1

 

MID 2 4

 

MID and PD 3 0

 

Dementia syndrome of depression 0 1

 

HD 1 1

 

Wernicke-Korsakoff syndrome 1 0

 

Dementia of unknown etiology 0 5

 

Total 54 54

 

Results. The subjects included 26 women and 28 men who ranged in age from 30 to 91 years (mean, 72.2; SD, 10.7).

 

Autopsy findings. Table 1 shows that 39 (72.2%) of the 54 cases fulfilled histologic criteria for AD, with or without other histopathologic findings. The remaining 15 cases (27.7%) showed changes corresponding to other neurodegenerative disorders, cerebrovascular disease, or Creutzfeldt-Jakob disease (CJD). Seven cases met the histopathologic criteria for multi-infarct de-mentia (MID). Five cases (9.2%) showed changes associated with Parkinson's disease (PD).

 

Twenty-two of the 39 AD patients (56%) were age 65 or greater at the time of the onset of the disease. Seven of the 15 patients in the group with other diseases (47%) were age 65 or older at the time of disease onset.

 

Clinical diagnosis. There was a general adherence to the criteria specified by McKhann et al.2 However, the two clinicians in this study considered the diagnosis of probable AD when the probability of AD was strong even if a patient had another disease potentially associated with dementia that might or might not have made some contribution to the patient's clinical state (table 2).

 

Accuracy of the clinical diagnosis (table 3). Group 1 (N = 12). There were six men and six women. Ten cases (83.3%) met the histologic criteria for AD. In nine cases (75.0%), the diagnosis of both clinicians agreed with the pathologic findings; in the other case (8.3%), one clinical diagnosis agreed with the histologic findings. The remaining two cases (16.6%) had histopathologic diagnoses of CJD and progressive supranuclear palsy (PSP), respectively. Both cases were incorrectly diagnosed by both clinicians.

 

Group 2 (N = 28). There were 11 women and 17 men. Eighteen cases (64.2%) had the histopathologic features for AD with or without additional findings. Sixteen of these cases (57.1%) were correctly diagnosed by both clinicians, one case by one of them, and both incorrectly diagnosed one case. The remaining ten cases (35.7%) included two with CJD; two with subcortical gliosis (SG); two with PD, one of which was associated with MID; one case of Huntington's disease (HD); two cases with MID; and one unclassifed. Only one, the HD case (3.5%), was correctly diagnosed by both observers, and four cases (14.2%), two MID and two PD, one associated with MID, were correctly diagnosed by one clinician.

 

Group 3 (N = 14). In this group there were nine women and five men. Eleven cases (78.5%) met the histopathologic criteria for AD with or without additional findings. Eight of these cases (57.1%) were correctly diagnosed by both clinicians, two cases by one of them, while both were incorrect in one case. Of the remaining three cases (21.4%), only one was correctly diagnosed (7.1%) by one clinician. Both missed the two other cases of MID.

 

There was no statistically significant difference in diagnostic agreement across patient groups in which the amount of clinical information was different (X2 = 1.19; p > 0.05).

 

Table 3. Accuracy of the clinical diagnosis by two clinicians

 

Both One Neither Correct Correct Correct

 

Group 1 (N = 12) 9 1 2(16.6%)

 

Group 2 (N = 28) 17 5 6(21.4%)

 

Group 3 (N = 14) 8 3 3(21.4%)

 

Table 4. Previously reported studies of clinicopathologic correlation in demented patients*

 

Agreement %

 

Number of cases AD

 

Retrospective studies

 

Todorov et al, 1975(7) 776 43

 

Perl et al, 1984(9) 26 81

 

Wade et al, 1987(12) 65 85

 

Alafuzoff et al, 1987(13) 55 63

 

Kokmen at al, 1987(14) 32 72

 

Joachim et al, 1987(15) 150 87

 

Prospective studies

 

Sulkava et al, 1983(8) 27 82

 

Molsa et al, 1985(10) 58 71

 

Neary et al, 1986(11) 24 75

 

Martin et al, 1987(16) 11 100

 

Morris et al, 1987(17) 25 100

 

* Certain differences in methodology need clarification. Some authors7,8,10,11,12,13,16,17 tabulated patients with AD alone, and others9,14,15 included patients with AD plus other diseases, eg, Parkinson's disease and MID. We have combined AD alone and AD plus MID and other neurodegenerative diseases.

 

Discussion. Our results indicate that in a population of patients with dementias of varied etiology, the diagnosis could be correctly inferred by at least one of two clinicians in approximately 80% of cases. For one observer, the sensitivity of clinical diagnosis for AD was 85% and the specificity was 13%, and for the other, it was 95% and 33% respectively.

 

In the cases with a discrepancy between the clinical diagnosis and the neuropathologic findings, the great majority of patients had atypical clinical courses and findings. The three cases with autopsy findings of CJD had a much longer course than is usually seen with that condition and failed to show the usual EEG abnormalities. The patient with autopsy findings of PSP did not show the disorder in the extraocular movements usually associated with that condition. An atypical course was also present for two AD cases and two MID cases that did not have any feature suggestive of vascular disease. In one MID case, the CT did not show any focal lesions, while in the other it was not available. With regard to the two patients with SG, the pathologic diagnosis is so unusual and so infrequently recorded that clear clinical correlates are not evident.18 The third category of possible error is the patient listed as unclassified, for whom no specific neuropathologic diagnosis could be reached.22

 

The small number of neuropathologic diagnoses of Parkinson's disease reflects that, for the purpose of this series, the diagnosis of PD was made only when there were both a clear-cut clinical history and the neuropathologic findings characteristic of the disease, such as Lewy bodies, neuronal loss, globose neurofibrillary tangles, astrocytosis, and extraneuronal melanin pigment in substantia nigra and locus ceruleus.

 

Are these results derived from a sample of 54 patients representative of disease patterns in the community? Generally, the diagnosis of patients reported from major medical centers tend to be biased since the more complicated cases are referred there. In this study, however, this bias may be less important. Due to the major public education campaign about dementia and AD sponsored by the ADRC, there is a widespread awareness in Pittsburgh and in the surrounding regions of Western Pennsylvania of the value of an autopsy for a definitive diagnosis. Therefore, the great majority of cases were referred to us because the family wanted to know the precise etiology of a case of dementia.

 

The significant improvement in the clinical diagnosis of AD is a recent phenomenon. Due to the publicity and the advances in communication of scientific investigations, most physicians are more likely to consider AD as the main cause of dementia. The current risk of overdiagnosing AD reminds one of what occurred during the 1960s with the diagnosis of "atherosclerotic dementia."6 The high sensitivity and low specificity for AD shown in our study may reflect that possibility.

 

Because of the varying criteria for "other dementias" in many publications, we chose to analyze the accuracy of clinical diagnosis in terms of the diagnosis of AD alone or AD plus other neuropathologic findings. Several retrospective studies have attempted to point out reliable clinical and pathologic features for diagnosing the dementias, especially AD. The study of Tomlinson et al6 is not included in table 4 because there was no attempt to validate the clinical diagnosis with pathologic findings. The reports surveyed vary considerably in size and methodology. Sample size, for example, ranges from 26 subjects9 to 776 subjects.7 Some studies base the diagnosis on limited clinical information,7'9'14'15 others use widely accepted diagnostic criteria such as those specified in DSM III,13 and one group uses a standardized clinical assessment of patients enrolled in a longitudinal study.12 The reported accuracy of the clinical diagnosis of AD ranges from 43%7 to 87%.15

 

Recent prospective studies that adhere to strict clinical criteria,10'11'17 those in DSM III8 or those proposed by McKhann et al,16 indicate improved accuracy of clinical diagnosis of the most common causes of dementia, especially AD. In sample sizes ranging from 11 subjects16 to 58 subjects,l0 the accuracy of clinical diagnosis is reported as ranging from 71%10 to 100%16'17' Only two series, both based on small samples, report a 100% accuracy. We consider it unlikely that such accuracy could be confirmed in large series because of some inevitable imprecision in clinical diagnoses and the variability of clinical pictures. Furthermore, although researchers generally agree on the application of uniform criteria in clinical diagnosis of dementia, opinions still differ about specific diagnostic criteria, as well as about the pathologic characterization of dementia. Except for those small series, the results summarized in table 4(7-15) is are remarkably consistent with ours.

 

In table 3, although there was no statistical difference (p > 0.05) in diagnostic agreement across patient groups, there is a trend toward a lower percentage of diagnostic errors for the patients who had been followed most intensely (16% in group 1 compared with 21% in groups 2 and 3). The difference is not great, and it is, in fact, surprising to find out that in the patients about whom relatively little was known (group 3) the percentage of diagnostic error was the same as among patients seen by neurologists and for whom much more data were available (group 2). These paradoxical findings probably indicate that both clinicians learned to extract essential diagnostic criteria2 in spite of the variations in the amount of information available for consideration. It may well be that clinical, radiographic, and laboratory assessment of patients with dementia is burdened with information that is excessive and unessential for purely diagnostic purposes.

 

Acknowledgments

 

We thank Dr. A. Julio Martinez and Dr. Gutti Rao from the Division of Neuropathology for autopsy data. Mrs. Margaret Forbes, Ms. Annette Grechen, and Mrs. Paula Gent helped in the preparation of the manuscript.

 

References

 

1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. Organic Dementia Disorders, 3rd ed. Washington DC, APA, 1983:101-161.

 

2. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan E. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Dis-ease. Neurology 1984;34:939-944.

 

3. Khachaturian Z. Diagnosis of Alzheimer's disease. Arch Neurol 1985;42:1097-1105.

 

4. Cummings J, Benson F. Dementia: a clinical approach, 1st ed. Boston: Butterworths, 1983.

 

5. Rosen WG, Terry R, Fuld P, Katzman R, Peck A. Pathological verification of ischemic score in differentiation of dementias. Ann Neurol 1980;7:486-488.

 

6. Tomlinson BE, Blessed G, Roth M. Observations on the brains of demented old people. J Neurol Sci 1970;11.205-242.

 

7. Todorov A, Go R, Constantinidis J, Elston R. Specificity of the clinical diagnosis of dementia. J Neurol Sci 1975;26:81-98.

 

8. Sulkava R, Haltia M, Paetau A, Wikstrom J, Palo J. Accuracy of clinical diagnosis in primary degenerative dementia: correlation with neuropathological findings. J Neurol Neurosurg Psychiatry 1983;46:9-13.

 

9. Perl D, Pendlebury W, Bird E. Detailed neuropathologic evalua-tion of banked brain specimens submitted with clinical diagnosis of Alzheimer's disease. In: Wirtman R, Corkin S, Growdon J, eds. Alzheimer's disease: advances in basic research and therapies. Proceedings of the Fourth Meeting of International Study Group on the Treatment of Memory Disorders Associated with Aging. Zurich, January 1984. Cambridge, MA: CBSM, 1984:463. Molsa PK, Paljarvi L, Rinne JO, Rinne UK, Sako E. Validity of clinical diagnosis in dementia: a prospective clinicopathological study. J Neurol Neurosurg Psychiatry 1985;48:1085-1090.

 

11. Neary D, Snowden JS, Bowen D, et al. Neuropsychological syn-dromes in presenile dementia due to cerebral atrophy. J Neurol Neurosurg Psychiatry 1986;49:163-174.

 

12. Wade J, Mirsen T, Hachinski V, Fismm~ M, Lau C, Merskey H. The clinical diagnosis of Alzheimer disease. Arch Neurol 1987;44:24-29.

 

13. Alafuzoff I, Igbal K, Friden H, Adolfsson R, Winblad B. Histopathological criteria for progressive dementia disorders: clinicalpathological correlation and classification by multivariate data analysis. Acta Neuropathol (Berl) 1987,74:209-225.

 

14. Kokmen E, Offord K, Okazaki H. A clinical and autopsy study of dementia in Olmsted County, Minnesota, 1980-1981. Neurology 1987;37:426-430.

 

15. Joachim CL, Morris JH, Selkoe D. Clinically diagnosed Alzheimer's disease: autopsy neuropathological results in 150 cases. Ann Neurol 1988;24:50-56.

 

16. Martin EM, Wilson RS, Penn RD, Fox JH, Clasen RA, Savoy SM. Cortical biopsy results in Alzheimer's disease: correlation with cognitive deficits. Neurology 1987;37:1201-1204.

 

17. Morris JC, Berg L, Fulling K, Torack RM, McKeel DW. Validation of clinical diagnostic criteria in senile dementia of the Alzheimer type. Ann Neurol 1987;22:122.

 

18. Moossy J, Martinaz J, Hanin I, Rao G, Yonas H, Boiler F. Thalamic and subcortical gliosis with dementia. Arch Neurol 1987;44:510-513.

 

19. Huff J, Becker J, Belle S, Nebes R, Holland A, Boller F. Cognitive deficits and clinical diagnosis of Alzheimer's disease. Neurology 1987;37:1119-1124.

 

20. Huff J, Boiler F, Lucchelli F, Querriera R, Beyer J, Belle S. The neurological examination in patients with probable Alzheimer's disease. Arch Neurol 1987;44:929-932.

 

21. Moossy J, Zubenko G, Martinez AJ, Rao G. Bilateral symmetry of morphologic lesions in Alzheimer's disease. Arch Neurol 1988;45:251-254.

 

22. Heilig CW, Knopman DS, Mastri AR, Frey W II. Dementia without Alzheimer pathology. Neurology 1985;35:762-765.

 

From the Departments of Neurology (Drs. Boller, Lopez, and Moossy), Psychiatry (Dr. Boller), Pittsburgh (University Drive) Veterans Administration Medical Center (Dr. Boller), Department of Pathology (Division of Neuropathology) (Dr. Moossy), and the Pittsburgh Alzheimer Disease Research Center (Drs. Boller, Lopez, and Moossy), University of Pittsburgh Medical School, Pittsburgh, PA.

 

Supported in part by NIH Grants nos. AG05133 and AG03705, NIMH Grant no. MH30915, by funds from the Veterans Admin., and by the Pathology Education and Research Foundation (PERF) of the Department of Pathology, University of Pittsburgh.

 

Presented in part at the fortieth annual meeting of the American Academy of Neurology, Cincinnati. OH, April 1988.

 

Received April 7, 1988. Accepted for publication in final form July 20, 1988.

 

Address correspondence and reprint requests to Dr. Boller, Department of Neurology, 322 Scaife Hall, University of Pittsburgh Medical School, Pittsburgh, PA 15261.

 

January 1989 NEUROLOGY 39 79

 

===============================

 

From: TSS (216-119-130-151.ipset10.wt.net)

 

Subject: Evaluation of Cerebral Biopsies for the Diagnosis of Dementia Date: May 8, 2001 at 6:27 pm PST

 

Subject: Evaluation of Cerebral Biopsies for the Diagnosis of Dementia

 

Date: Tue, 8 May 2001 21:09:43 –0700

 

From: "Terry S. Singeltary Sr."

 

Reply-To: Bovine Spongiform Encephalopathy

 

#### Bovine Spongiform Encephalopathy ####

 

Evaluation of Cerebral Biopsies for the Diagnosis of Dementia

 

Christine M. Hulette, MD; Nancy L. Earl, Md; Barbara J. Crain, MD, Phd

 

· To identify those patients most likely to benefit from a cerebral biopsy to diagnose dementia, we reviewed a series of 14 unselected biopsies performed during a 9-year period (1980 through 1989) at Duke University Medical Center, Durham, NC. Pathognomonic features allowed a definitive diagnosis in seven specimens. Nondiagnostic abnormalities but not diagnostic neuropathologic changes were seen in five additional specimens, and two specimens were normal. Creutzfeldt-Jakob disease was the most frequent diagnosis. One patient each was diagnosed as having Alzheimer's disease, diffuse Lewy body disease, adult-onset Niemann-Pick disease, and anaplastic astrocytoma. We conclude that a substantial proportion of patients presenting clinically with atypical dementia are likely to receive a definitive diagnosis from a cerebral biopsy. However, in those with coexisting hemiparesis, chorea, athetosis, or lower motor neuron signs, cerebral biopsies are less likely to be diagnostic. (Arch Neurol. 1992;49:28-31)

 

"Dementia" is a syndrome characterized by global deterioration of cognitive abilities and is the general term used to describe the symptom complex of intellectual deterioration in the adult. It is associated with multiple causes, although Alzheimer's disease (AD) alone accountsfor approximately 60% of cases.1-3

 

Interest in the accuracy of the diagnosis of dementia is a relatively recent phenomenon, reflecting both an increase in physicians' awareness of multiple specific causes of dementia and a marked increase in both the incidence and prevalence of dementia associated with the increase in the elderly population.4' The clinical evaluation remains the key to the differential diagnosis, and in most cases dementia can be diagnosed accurately by clinical criteria. However, the definitive diagnoses of AD.1'5'7 Pick's disease,8'10 Creutzfeldt-Jakob disease (CJD),11-16 Binswanger's disease,17'18' and diffuse Lewy body disease19-22 still require histologic examination of the cortex to identify characteristic structural changes.

 

Brain tissue is almost invariably obtained at autopsy, and the vast majority of pathologic diagnoses are thus made post mortem. Alternatively, an antemortem histologic diagnosis can be provided to the patient and his or her family if a cerebral biopsy is performed while the patient is still alive. Because brain biopsies for dementia are not routinely performed, we sought to define the spectrum of pathologic changes seen in a retrospective unselected series of adult patients undergoing cerebral biopsy for the diagnosis of atypical dementing illnesses and to determine the patient selection criteria most likely to result in a definitive diagnosis.

 

MATERIALS AND METHODS

 

Cerebral biopsies performed solely for the diagnosis of dementia in adult patients were identified by a manual search of the patient files of the Division of Neuropathology, Duke University Medical Center Durham, NC, and by a computerized search of discharge diagnoses of patients undergoing brain biopsies. Fourteen cases were identified from the period 1980 to 1989. Patients undergoing biopsies for suspected tumor, inflammation, or demyelinating disease were excluded. A clinical history of dementia was an absolute requirement for inclusion in the study. Diagnosis was based on Dignostic and Statistical Manual of Mental Disorders, Third Edition, and on National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer's Disease and Related Disorders Association (ADRDA) criteria for probable AD.23

 

The published recommendations for handling tissue from patients with suspected CJD were followed in every case.24-26 Briefly, tissue was transported in double containers clearly marked "Infectious Disease Precations." Double gloves, aprons, and goggles were used at all times. Tissue was fixed in saturated phenol in 3.7% phosphate-buffered formaldehyde for 48 hours25 and subsequently hand processed for paraffin embedding. At least 1 cm(to 3 power) of tissue was available for examination from each patient, except for patient 7, who underwent bilateral temporal lobe needle biopsies. Patient 14 underwent biopsy of both frontal and temporal lobes.

 

One paraffin block was prepared for each biopsy specimen, and sections were routinely stained with hematoxylin-eosin, luxol fast blue, Congo red, alcian blue, periodic acidSchiff, and modified King's silver stain27 in every ease, except for case 7, in which the diagnosis was made by frozen section. Portions of both gray and white matter were primarily fixed in glutaraldehyde and embedded in epoxy resin (Epon). Tissue was examined by electron microscopy if abnormalities, such as neuronal storage or other inclusions, were seen in routine paraffin sections.

 

Khachaturian's5 National Institute of Neurological and Communicative Disorderers and Stroke/ADRDA criteria for quantitation of senile plaques and the diagnosis of AD were used in all cases after 1985. At the time of our, study, these criteria were also applied retrospectively to cases accessioned before 1985. No attempt was made to grade the severityof other abnormalities (eg, gliosis and spongiform change), and the original pathologic diagnoses were not revised.

 

RESULTS

 

The clinical presentations, biopsy findings, and follow-up data, including postoperative complications, are summarized in Table 1 for all 14 patients. Their biopsy findings are summarized in Table 2.

 

The ages of this unselected group of 14 patients who underwent cerebral biopsies for dementia ranged from 32 to 78 years (mean, 51.6 years). There were seven men and seven women. Duration of symptoms ranged from 1 month to 6 years (mean, 2.3 years). No differences were noted between the group with diagnostic biopsies (cases 1 through 7) and the group with nondiagnostic biopsies (cases 8 through 14) with regard to age at the time of biopsy or duration of symptoms. However, five of seven patients in the nondiagnostic group had hemiparesis, chorea, athetosis, or lower motor neuron signs. None of these findings was present in the patients with diagnostic biopsies. Visual disturbances, abnormal eye movements, and ataxia were present in four of seven cases with diagnostic biopsies but were absent in the group with nondiagnostic biopsies.

 

In this series of 14 patients, two experienced postoperative complications, one of which was severe. Patient 2 developed an intraparenchymal parietal cortex hemorrhage and was mute after biopsy. Patient 9 developed a subdural hygroma that was treated uneventfully.

 

Eight patients died 1 month to 9 years after biopsy. An autopsy was performed in five of these eight patients. One of these patients (patient 4) had a firm diagnosis of presenile AD on biopsy, which was confirmed at autopsy. Patient 3 had a biopsy diagnosis of CJD, which was also confirmed at autopsy. Two patients with only white-matter gliosis diagnosed at biopsy had autopsy diagnoses of amyotrophic lateral sclerosis with dementia (patient 8) and CJD (patient 9). One patient in whom a biopsy specimen appeared to be normal had Huntington disease identified at autopsy (patient 14). At the time of this writing, four patients are still alive, two are in clinically stable condition 1 to 2 years after biopsy, and two are severely demented 2 to 3 years after biopsy. Two patients (one with a definite and one with a possible diagnosis of CJD) have been unavailable for follow-up.

 

COMMENT Our study of patients presenting with atypical dementia reaffirms the diagnostic utility of cerebral biopsy. In selected cases, cerebral biopsy results in a high yield of definitive diagnostic information. A wide variety of disorders may be encountered, including CJD, AD, diffuse Lewy body disease, and storage disorders, such as Niemann-Pick disease.28-30 The diagnosis of Niemann-Pick disease type C was confirmed by assay of cholesterol esterification in cultured fibroblasts31'32' with markedly abnormal results in one patient, who was described in detail elsewhere.33

 

One example of an unsuspected anaplastic astrocytoma (case 7) was also encountered. This case was unusual in light of currently used sensitive imaging techniques. This patient may have been suffering from gliomatosis cerebri.

 

Table 1.--Summary of Clinical Presentation and Course*

 

Case/Age,y/Sex

 

Duration of Symptoms, y

 

Clincial Findings

 

Biopsy

 

Follow-up ==========

 

1/60/F

 

0.1

 

Dementia, left-sided homonymous hemianopia, myoclonus, EEG showing bilateral synchronous discharges

 

CJD

 

Unavailable ==========

 

2/57/M

 

0.4

 

Dementia, aphasia, myoclonus; visual disturbance; facial asymmetry, abnormal EEG

 

CJD

 

Postoperative intraparenchymal hemorrhage, mute dead at 58 y, no autopsy ==========

 

3/59/M

 

2

 

Dementia, apraxia, visual disturbance, bradykinesia, EEG showing periodic sharp waves

 

CJD

 

Dead at 61 y, autopsy showed CJD =========

 

4/32/M

 

1

 

Dementia, myclonus, ataxia, family history of early-onset dementia

 

AD

 

Dead at 40 y, autopsy showed AD =========

 

5/78/M

 

6

 

Dementia, paranoia, agitation, rigidity

 

Diffuse Lewy body disease

 

Dead at 78 y, no autopsy =========

 

6/37/F

 

6

 

Dementia, dysarthria, abnormal eye movements, ataxia

 

Neuronal storage disorder, adultonset N-P type II

 

Stable at 39 y =========

 

7/58/F

 

0.3

 

Dementia, amnesia, depression, partial complex seizures

 

Anaplastic astrocytoma

 

Dead at 58 y, no autopsy ==========

 

8/37/M

 

2

 

Dementia, dysarthria, upper-extremity atrophy and fasciculations

 

Gliosis

 

Dead at 38 y, auotpsy showed amyotrophic lateral sclerosis with white-matter gliosis =========

 

9/45/F

 

2

 

Dementia, aphasia, right-sided hemiparesis, rigidity, athetosis

 

Gliosis

 

Postoperative subdural hygroma, dead at 50 y, autopsy showed focal CJD =========

 

10/56/F

 

2

 

Dementia, myoclonus, cerebellar dysaarthria, EEG showing biphasic periodic sharp waves

 

Consistent with CJD

 

Unavailable ==========

 

11/60/F

 

2

 

Dementia, dysarthria, right-sided hemiparesis, hypertension, magnetic resonance image showing small vessel disease

 

Plaques, gliosis

 

stable at 61 y =========

 

12/52/F

 

2

 

Dementia, aphasia, right-sided hemiparesis

 

Gliosis

 

Bedridden, severely demented at 54 y =========

 

13/40/M

 

0.5

 

Dementia, mild bifacial weakness, concrete thinking, altered speech

 

Normal

 

Stable at 41 y =========

 

14/52/M

 

6

 

Dementia, choreoathetosis, family history of senile dementia, computed tomographic scan showing normal caudate

 

Normal

 

Dead at 61y, autopsy showed Huntington's disease, grade II/IV ========== * EEG indicates electroencephalogram; CJD, Creutzfeldt-Jakob disease; AD, Alzheimer's disease; and N-P, Niemann-Pick disease.

 

Table 2.--Pathologic Findings at Biopsy *

 

Case Site of Biopsy Type of Biopsy Tissue Examined Spongiform Change Neuritic Plaques per X 10 Field Tangles White Matter Gliosis Other

 

1 R temporal Open 1 cm3 + 0 0 0 0 =====

 

2 L temporal Open 1 cm3 + 0 0 0 0 =====

 

3 R temporal Open 1 cm3 + 0 0 0 0 =====

 

4 R frontal Open 1 cm3 0 >100 + + Amyloid angiopathy =====

 

5 R temporal Open 1 cm3 0 9 0 0 Lewy bodies =====

 

6 R temporal Open 1 cm3 0 0 0 0 Neuronal storage =====

 

7 R temporal/L temporal Needle/needle 1 X 0.3 X 0.3 cm / 1 X 0.3 X 0.1 cm 0/0 0/0 0/0 +/0 0/anaplastic astrocytoma =====

 

8 R frontal Open 1 cm3 o o o + 0 =====

 

9 L parietal Open 1 cm3 0 0 ± + 0 =====

 

10 R temporal Open 1 cm3 ± 0 0 0 0 =====

 

11 L temporal Open 1 cm3 0 23 0 + 0 =====

 

12 L temporal Open 1 cm3 0 0 0 + 0 =====

 

13 r frontal Open 1 cm3 0 0 0 0 0 =====

 

14 L temporal/L frontal Open/open 1 cm3/ 1 cm3 0/0 0/0 0/0 0/0 0/0 ===== * Plus sign indicates present; zero, absent; and plus/minus sign, questionably present

 

Positron emission tomography showed multiple areas of increased uptake, even though the magnetic resonance image was nondiagnostic and showed only subtle increased signal intensity on review. Bilateral temporal lobe needle biopsies yielded abnormal findings. Biopsy of the right side showed only reactive gliosis, which may have been adjacent to tumor. Biopsy of the left side, performed 3 days later, was diagnostic for anaplastic astrocytoma. Unfortunately, permission for an autopsy was refused, and complete evaluation of the underlying pathologic process thus must remain speculative.

 

The high incidence of definite and probable CJD in our series indicates that it is imperative that appropriate precautions are taken to prevent the transmission 0f disease to health care workers when biopsy tissue from patients with dementia is handled.24-26

 

At our institution, cerebral biopsy for the diagnosis of dementia is reserved for patients with an unusual clinical course or symptoms that cannot be diagnosed with sufficient certainty by other means. In most instances, cerebral biopsy is unnecessary and is clearly not a procedure to be proposed for routine diagnostic evaluation. In all cases, extensive clinical, metabolic, neuropsychological and radiologic evaluations must be performed before cerebral biopsy is considered. In addition, preoperative consultations among neurologists, neurosurgeons, neuroradiologists, and neuropathologists are necessary to ascertain the optimal biopsy site given the clinical data to ensure that maximal infornmtion is derived from the biopsy tissue.

 

An optimal biopsy specimen is one that is taken from an affected area, handled to eliminate artifact, and large enough to include both gray and white matter.34 Open biopsy is generally preferred because it is performed under direct visualization and does not distort the architecture of the cerebral cortex. This method also provides sufficient tissue (approximately 1 cm3) to perform the required histologic procedures.

 

Some physicians question the utility of diagnostic cerebral biopsies in dementia, stating that the procedure is unlikely to help the patient. While it is frequently true that the diagnoses made are untreatable with currently available therapeutic modalities, this is by no means universally true. Kaufman and Catalano35 noted that cerebral biopsy has revealed specific treatable illnesses, such as meningoencephalitis and multiple sclerosis. Our patient with anaplastic astrocytoma (patient 7) underwent radiation therapy, although she quickly died of her disease. Furthermore, when a definitive diagnosis can be made, even of incurable illnesses, such as CJD and AD, it is often possible to give an informed prognosis to the family and to help them plan for the future.

 

The formulation of indications, for diagnostic cerebral biopsy raises difficult and complex issues. In 1986, Blemond36 addressed the clinical indications and the legal and moral aspects of cerebral biopsy, and his recommendations remain valid today: (1)The patient has a chronic progressixe cerehral disorder with documented dementia. (2) All other possible diagnostic methods have already been tried and have failed to provide sufficient diagnostic certainty. (3) The general condition of the patient permits cerebral biopsy. (4) Several specialists are in agreement regarding the indication. (5) Informed consent is obtained from relatives. (6) Modern diagnostic tools, such as immunocytochemistry and electron microscopy, are used to the fullest capacity in the examination of the material obtained.

 

As with any intracranial surgical procedure involving the cerebral cortex, the risks of cerebral biopsy include anesthetic complications, hemorrhage, infections, and seizures. Guthkelch37 stated that the mortality associated with brain biopsy is not greater than that associated with general anesthesia. Cerebral biopsy, however can result in substantial morbidity. In our series, two of 14 patients suffered operative complications, intraparenchymal hemorrhage in one patient (patient 2) resulted in aphasia, while another patient (patient 10) developed a subdural hygroma, which was successfully treated, and recovered her baseline status.

 

The current diagnostic accuracy of cerebral biopsy in the evaluation of dementia is unknown. Most of the larger general series 34'38-41 were reported before computed tomography was available and included many pediatric cases presenting with genetic neurodegenerative disorders that are now more readily diagnosed by other means. For adults with dementia, less information is available. Katzman et al4 recently reviewed the literature concerning the diagnostic accuracy of cerebral biopsy for dementia and concluded that 75% of these procedures result in diagnostic material. Patient selection is very important, and the literature is heavily weighted toward patients with a clinical diagnosis of AD.35'42-44 Our study thus provides documentation of the diagnostic accuracy of cerebral biopsies in unselected patients with atypical dementia.

 

Autopsy follow-up is imperative in any dementia program,2 as a definitive diagnosis will not be made in a substantial proportion of patients. In our series, three patients died without a diagnosis, and autopsy was performed in all three. The diagnostic features were not present in the cortical area in which the biopsy was performed. In case 8, examination of the spinal cord revealed amyotrophic lateral sclerosis. Diffuse gliosis of the white matter was noted, which was the pathologic basis of the patient's dementia. In case 9. the spongiform change of CJD was focal, according to the pathologist's report; unfortunately, the tissue was not available for our review. In case 14, the diagnosis of Huntington's disease grade II/IV was made after close examination of the caudate nucleus. As one might predict, fewer autopsies were performed in the group with diagnostic biopsies; only two of five deaths in this category were followed by postmortem examinations. The diagnosis of AD was confirmed in case 4. In ease 3, the biopsy diagnosis of CJD was confirmed.

 

In summary, a series of 14 unselected cerebral biopsies performed for the diagnosis of atypical dementia was reviewed to define the spectrum of pathologic changes seen and to estimate the likelihood of obtaining diagnostic tissue. Histologic diagnoses of CJD, AD, diffuse Lewy body disease, Niemann-Pick disease type C, or anaplastic astrocytoma were made in seven patients. The high incidence of CJD in this population (four of 14 cases) emphasizes the need to use appropriate precautions when tissue from patients with unusual dementing illnesses is handled. Consultation among neurologist, neurosurgeons, neuroradiologists, and neuropathologists is essential to select appropriate patients and to choose the proper biopsy site. Demented patients with coexisting hemiparesis, chorea, athetosis, or lower motor neuron signs are unlikely to benefit from cortical biopsy.

 

This investigation was supported by Clinical Investigator Award PHS AG-00446 from the National Institute on Aging (Dr. Hulette) and by grant PHS SP50AG05128-03 from the Joseph and Kathleen Bryan Alzheimer's Disease Research Center (Drs Earl and Crain). Dr Hulette is a College of American Pathologists Foundation Scholar, Northfield, Ill.

 

The Authors thank Ms Bonnie Lynch and Ian Sutherland, PhD, for thier assistance.

 

1. Chui HC. Dementia: a review emphasizing clinicopathologic correlation and brain-behavior relationships. Arch NeuroI. 1989;46;806-814.

 

2. Jellinger K, Danielczyk W, Fischer P, Gabriel E. Clinicopathological analysis of dementia disorder's in the elderly, J Neurol Sci. 1990:95:239-258.

 

3. Katzman R. Alzheimer's disease. N Engl J Med. 1986;314:964-973.

 

4. Katzman R, Lasker B, Bernstein N. Advances in the diagnosis of dementia: accuracy of diagnosis and consequences of misdiagnosis of disorders causing dementia. In: Terry RD ed. Aging and the Brain. New York, NY: Raven Press; 1988: 17-62.

 

5. Khachaturian ZS. Diagnosis of Alzheimer's disease. Arch Neurol. 1985;42;1097-1105.

 

6. Koranyi E. The cortical dementias. Can J Psychiatry 1988;33;838-845.

 

7. Wilcock GK, Hope RA, Brooks DN, et al. Recommended minimum data to be collected in research studies on Alzheimer's disease. J Neurol Neurosurg Psychiatry. 1989;52;693-700

 

8. Esiri MM, Oppenheimer DR. Diagnostic neuropathology. Boston, Mass: Blackwell Scientific publications Inc; 1989;236-239.

 

9. Sim M, Bale RN. Familial pre-senile dementia: the relevance of a histological diagnosis of Pick's disease. Br J Psychiatry. 1973;122;671-673.

 

10. Tomlinson BE, Corsellis JAN. Aging and the dementias, In Adams JH, Cosellis JAN, Duchen LW, eds. Greensfield's Neuropathology. New York, NY: John Wiley & Sons Inc; 1984:951-1025

 

11. F;endheim PE. The hunmn spongitbrm ence-phahq,athies. Ncl~rol Clim 19¥,1:2:281-29¥.

 

12. Brown P, Rodgers-Johnson P, Cathala L, Gibbs CJ, Gajdusek DC. Creutzfeldt-Jakob disease of long duration; clinicopathologic characteristics, Transmissibility and differential diagnosis. Ann Neurol. 1984;16:295-304.

 

13. Davanipour Z, Alter M, Sobel E. Creutzfeldt-Jakob disease. Neurol Clin. 1986:4:415-425.

 

14. Masters CL, Richardson EP: Subacute spongiform encephalopathy (Creutzfeldt-Jakob disease): the nature and progression of spongiform changes. Brain 1978;101:333-344.

 

15. Neatherlin JS. Creutzfeldt-Jakob disease. J Neurosci Nurs. 1988;20:309-313.

 

16. Nochlin D, Sumi SM, Bird TD, et al. Familial dementia with Prp-positive amyloid plaques: a variant of Gerstmann-Straussler syndrome. Neurology. 1989;39;910-918

 

17. Fisher CM. Binswanger's encephalopathy: a review. J Neurol 1989;236;65-79

 

18. Roman GC. Senile dementia of the Bins-wanger type. JAMA. 1987125811782-1788.

 

19. Burkhardt CR, Tilley CM, Kleinschmidt-DeMasters BK, de la Monte S, Norenberg MD, Sehneck SR. Diffuse Lewy hody disease and progressive dementia. Neurology. 1988;38:1520-1528.

 

20. Dickson DW, Davies P, Mayeux R, et al. Diffuse Lewy body disease: neuropathological and biochemical studies of six patients. Acta Neuropathol (Berl). 1987;75:8-15.

 

21. Gibb WRG. Neuropathelogy in movement disorders. J Neurol Neurosurg Psychiatry. 1989:supl:55-67.

 

22. Gibb WRG, Luthert PJ, Janota A. Lantos PL. Cortical Lewy body dementia: clinical features and classification. J Neurol Neurosurg Psychiatry. 1989;52;185-192.

 

23. MeKhann G. Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimers disease: report of the NINCDS-ADRDA work group. Neurology. 1984;34:939-944.

 

24. Brown P, Gibbs CJ Jr, Gajdusek DC, Cathala F, LaBauge R. Chemical disinfection of Creutzfeldt-Jakob disease virus. N Engl J Med. 1982;306;1279-1282.

 

25. Brumbach RA. Routine use of phenolipid formalin in fixation of autopsy brain tissue reduce risk of inadvertent transmission of Creutzfeldt-Jakob disease. N Engl J Med. 1988;319;654.

 

26. Rosenberg RN, White CL, Brown P, et al. Precautions in handling tissues, fluids and other contaminated materials from patients with documented or suspected Creutzfeldt-Jakob disease. Ann Neurol. 1986;12:75-77.

 

27. Lloyd B, Brinn N, Burger PC. Silver-staining of senile plaques and neurofibrillary change in paraffin-embedded tissues, J Histotech. 1985;8: 155-156.

 

28. Brady RO. Sphingomyelin lipidosis: Niemann-Pick disease. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS, eds. The Metabolic Basis of Inherited Disease. 5th ed. New York, NY: McGraw-Hill International Book Co; 1983:831-841.

 

29. Cogan DG, Chu FC, Reingold D, Barranger J. Ocular motor signs in some metabolic diseases. Arch Ophthalmol. 1981:99:1802-1808.

 

30. Lake BD. Lysosomal enzyme deficiencies. In: Adams JH, Corsellis JAN, Duchen LW. eds. Greenfield's Neuropathology. 4th ed. New York, NY:John Wiley & Sons Inc; 1984;491-572.

 

31. Pentchev PC. Comly ME, Kruth HS, et al. A defect in cholesterol esterification in Niemann-Pick disease (type C) patients. Proc Natl Acad Sci USA. 1985;82;8247-8251.

 

32. Vanier MT, Wenger DA, Comly ME, Rousson R. Brady RO, Pentchev PG. Niemann-Pick disease group C: clinical variability and diagnosis based on defective cholesterol esterification. Clin Genet. 1988;33;331-348.

 

33. Hulette CM, Earl NL, Anthony DC, Crain BJ. Adult onset Niemann-Pick disease type C: a case presenting with dementia and absent organomegaly. Clin Neuropathol. In press.

 

31. Pentchev PC, Comly ME, Kruth HS, et al. A defect in cholesterol esterfication in Niemann-Pick disease (type C) patients. Proc Natl Acad Sci USA. 1985;82;8247-8251

 

32. Vanier MT, Wenger Da, Comly ME, Rousson R, Brady Ro, Pentchev PG. Niemann-Pick disease group C: clinical variability and diagnosis based on defective cholesterol esterification. Clin Genet. 1988;33;331-348

 

33. Hulette CM, Earl NL, Anthony DC, Crain Bj. Adult onset Niemann-Pick disease type C; a case presenting with dementia and absen organomegaly. Cliln Neuropathol. In Press.

 

34. Groves R, Moller J. The value of the cerebral cortical biopsy. Acta Neurol Scand. 1966;42;477-482

 

35. Kaufman HH. Catalano LW. DiaGnostic brain biopsy: a series of 50 cases and a review. NeUROSURGERY. 1979:4:129-136.

 

36. Blemond A. Indications, legal and moral aspects of cerebral biopsies, In: Proceedings of Fifth International Congress of Neuropathology, Zurich, 1965, Princeton, NJ: Excerpta Medica; 1966:372-375.

 

37. Guthkelch AN. Brain biopsy in infancy and childhood. Dev Med Child Neurol, 1968;10;107-109.

 

38. Blackwood W, Cumings JN. The combined histological and chemical aspects of cerebral biopsies. In: Proceeedings of Fifth International Congress of Neuropathology, Zurich, 1965. Princeton, NJ: Excerpta Medica; 1966:364-371.

 

39. Green MA, Stevenson LD, Fonseca JE, Wortis SB. Cerebral biopsy in patients with presenile dementia. Dis Nerv Syst. 1952;13:303-307.

 

40. Sim M, Turner E, Smith WT. Cerebral biopsy in the investigation of presenile dementia, I: clinical aspects, Br J Psychiatry. 1966;112:119-125.

 

41. Turner E, Sim M. Cerebral biopsy in the investigation of presenile dementia, II: pathological aspects, Br J Phychiatry. 1966;112:127-133.

 

42. Bowen DM, Benton JS, Spillane JA. Smith CCT, Allen SJ. Choline acetyltransferase activity and histopathology of frontal neocortex from biopsies of demented patients. J Neurol Sci. 1982;57:191-202.

 

43. Neary D, Snowden JS, Bowen DM, et al. Cerebral biopsy in the investigation of presenile dementia due to cerebral atrophy. J Neurol Neurosury Psychiatry. 1986;49:157-162.

 

44. Neary D, Snowden JS, Mann DMA, et al. Alzheimer's disease: a corelative study. J Neurol Neurosurg Psychiatry. 1986;49:229-237.

 

Cerebral Biopsies in Dementia-- Hulette et al 31

 

Accepted for publication July 11, 1991. From the Department of Pathology, Division of Neuropathology (Drs Hulette and Crain), the Department of Medicine, Division of Neurology (Dr Earl), and the Department of Neurobiology (Dr. Crain), Duke University Medical Center, Durham, NC.

 

Arch Neurol--Vol 49, January 1992

 

TSS/5/7/01

 

=============================

 

Clinico-Pathological Correlation in Dementias

 

F. TeixeiraI, E. Alonso2, V. Romerol, A. Ortiz', C. Martinez3, E. Otero4 'Departnents of Experimental Neuropathology and 2Genetics, and the 3Division of Psychology and 4Neurology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico

 

Submitted: February 22, 1994

 

Accepted: February 9, 1995

 

The object of this study is to investigate whether or not there are clinical signs and symptoms in patients with dementia that, by themselves or jointly, can be associated with the pathological diagnosis of Alzheimer's disease. Twelve patients with dementia were studied, in whom the clinical diagnosis of Alzheimer's disease was made according to established criteria. A sample of leptomeninges, cortex and subcortical white matter was obtained from each patient and was processed for light and electron microscopy. In the cases in whom neuritic plaques and neurofibrilary tangles were present, pathological changes were quantified. The diagnosis of Alzheimer's disease was confirmed in 5 cases, whereas in 3 patients spongiform encephalopathy was present. In the remaining patients, the number of neuritic plaques was within normal limits for the age of the subjects. Comparison of the data in Alzheimer (n = 5) and non-Alzheimer (n = 7) groups showed an increased, statistically significant incidence of acalculia, abnormalities of judgment, impairment of abstraction and primitive reflexes in the former. Although good fitting models were obtained, none achieved perfect discrimination. The model that included alterations ofjudgment and acalculia gave the best fit.

 

Key Words: Alzheimer's disease, dementia

 

INTRODUCTION

 

Several signs and symptoms have been described extensively in the various diseases that lead to dementia. These symptoms include lack of attention, defective memory, apathy, emotional lability, judgment changes and delirium (Karp and Mirra 1986). Many of these characteristics, as well as electrophysiological changes, are said to be shared by different forms of dementia (McKhann et al 1984). It is the object of this paper to investigate whether or not, in Alzheimer's disease, there is a constellation ofclinical data that will allow the clinician to reach the diagnosis without the aid of a brain biopsy. Address reprint requests to: Dr F Teixeira, Instituto Nacional de Neurologfa y Neurocirugia, Insurgentes Sur, 3877, Mexico 14269, DF, Mexico.

 

METHODS

 

Twelve patients were studied. Because of degeneration of the patient's brain functions, a detailed medical history was obtained from family members. A complete clinical examination was performed, including cranial nerves, tone, reflexes, coordination, gait and proprioception. None ofthese patients had a history or clinical findings suggestive of other causes of dementia such as cerebral infarction, trauma to the head, intracranial neoplasia, substance abuse or systemic or neurological diseases associated with dementia. Neuropsychological examination was designed by the Division of Psychology of the National Institute of Neurology and Neurosurgery so that the exploration could be adapted to the sociocultural level and schooling of the patients. Basic neuropsychological exploration investigated

 

JPsychiatry Neurosci, VoL 20, No. 4, 1995 276

 

Dementia

 

Table 1 Degree of psychological deterioration expressed as percentages Degree of deficit Marked (%) Moderate/slight (%) 77 82 84 100 60 66 100 23 18 16 0 20 28 0 Nil (%) 0% 0% 0% 0 20 6 0

 

Gnosias 66 22 12 R & D): repetition and denomination; I & I: ideomotor and ideatory; VI, P & C: visuomotor integration, perception and coordination. attention, concentration, memory (immediate, recent, remote and learning), language (flow, repetition denomination and comprehension), praxis (ideomotor, ideatory and visuoconstructive) and all modalities of gnosias. Degrees of impairment in each patient were qualified as follows, per different area: 0 = nil, 1 = slight to moderate, and 2 = severe. In 7 patients, a scale was used to assess 5 different aspects of the ability to perform everyday activities: personal hygiene, work, interpersonal relation, motor system (abnormal movements, gait) and memory and visuospacial Qrganization. The scale consists of 100 tests, each one graded as follows: 0 = normal; I = slight deficit; 2 = moderate deficit, and 3= severe deficit. Normal subjects score 20 points or less. The patients underwent an extensive battery of laboratory and neuroimaging studies to evaluate the degree and topography of cerebral atrophy, to exclude vascular impairment and causes of partially or completely reversible dementias. This detailed work-up included a complete blood count, erythrocyte sedimentation rate, Chem 20, thyroid tests, levels of B12, syphilis serology, HIV testing, chest X-ray, electrocardiogram, examination of cerebrospinal fluid, computerized tomographic scanning, and magnetic resonance imaging. Baseline electroencephalographic measures were used to follow the course of the disease. The latency and amplitude of P 300 cognitive-evoked potential were correlated with neuropsychological deterioration.

 

After the studies were completed, the relatives were briefed on the risks of a brain biopsy and on its nature, i.e., that the biopsies are not curative, but part of research protocol to study changes in blood-brain barrier in Alzheimer's disease that is still in process. This protocol was approved by the Committee for Ethics in Biomedical Research from the National Institute of Neurology and Neurosurgery. After permission for the biopsy was granted in writing, a sample of the superior frontal gyrus was taken, as this adds the least operative time and risk. In addition, quantitative studies by de la Monte (1989) showed that, in Alzheimer brains, the regional distribution ofplaques and tangles usually correlates with the distribution of cerebral atrophy. In all of this study's patients, neuroimaging studies revealed that the frontal gyri were severely affected.

 

The s4mple, which included the leptomeninges, cerebral cortex and subcortical white matter, was divided into 2 parts. The first part of the specimen was fixed in buffered formalin and embedded in paraffin. Sections were stained with hematoxylin and eosin; luxol fast blue-cresyl violet was used for myelin and nerve cells; Bielschowsky and Von Braunmuhl methods were used for neurofibrillary tangles and neuritic plaques; and Congo Red was used for amyloid. Immunoperoxidase techniques, using monoclonal mouse antibodies to human beta amyloid and to amyloyd A4 component (Dako A/S, Denmark), were also applied. Senile plaques and neurofibrillary tangles were counted at 100 x power and 400 x power, respectively, on the whole surface of the cortex contained in sections stained with silver methods or immunoperoxidase techniques. Their numbers were expressed per square millimeter unit. The second part of the specimen was finely sectioned and fixed in 2.5% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4, post-fixed in 1% osmium tetroxide in the same buffer, dehydrated in acetone and embedded in Epon. Semithin sections were stained with toluidine blue and examined under a light microscope. Ultrathin sections, in the silver/grey area of the spectrum of interference colors, were stained with uranyl acetate and lead citrate and observed under a Zeiss EMIO transmission electron microscopy.

 

Attention Concentration Memory Language Fluidity R&D Praxias I&I VI, P & C .-I.. IL I-I 277 July 1995 Journal ofPsychiatry & Neuroscience The following packages were used for statistical analysis of the results: BMDP 1990 version on a VAX 11n750, and GLIM 3.77 version on an AT microcomputer with coprocessor. Pearson's Chi-Square Test and Fisher's Exact Test were used to compare clinical features.

 

RESULTS

 

The results of clinical and laboratory examinations did not rule out Alzheimer's disease in any of the patients, according to established criteria (McKhann et al 1984). There were no instances of hypothyroidism, or cardiac, renal or hepatic malfunction. Cerebrospinal fluid examination was normal in all patients. Computerized tomographic scanning and magnetic resonance imaging showed, in all individuals, global cerebral atrophy with marked reduction in overall crosssectional areas of the brain, an increase of the volume of the ventricular system and of the subarachnoid space. No areas of cerebral infarction were seen in any of the images. Results of the basic neuropsychological exploration are expressed in Table 1. Eighty-eight percent of the patients showed a marked deterioration of judgment and a similar deficit in the performance of abstract tasks and calculation. The mean score of the 7 subjects tested for everyday activity scales was 49, which reflects marked deterioration, and indicates a requirement for permanent assistance and care. In summary, there was a severe degeneration of superior cerebral functions involving cortical and subcortical areas. At this advanced stage of dementia, it is not possible to detect significant differences of involvement among several areas. Five patients (numbers 8 to 12) were diagnosed as having Alzheimer's disease with base on morphologic criteria determined by Khachaturian et al (1985) and Crystal et al (1988). They had numerous neuritic plaques and a variable density of neurofibrillary tangles. Three patients (5 to 7) showed numerous small (1 to 12 micrometer in diameter) vacuoles, many of them confluent, which markedly distorted the neuropil of the cortex. There was severe astrocytic gliosis. No plaques or tangles were seen in these biopsies, and no congophilic or A4 positive material was present. Electron microscopy showed that these vacuoles were located in the cytoplasm of astrocytes and neurons, and contained cytoplasmic and membranous debris. These cases were diagnosed as having Jakob-Creutzfeldt disease. Patients 1 to 3 had few neuritic plaques; their biopsy was reported as being normal for their age. In patient 4, many neurons were atrophic, with dense nuclei and abundant cytoplasmic lipofuscin. These neurons were located far from the surgical margins of the specimen and belonged to all cortical layers. In none of the biopsies were there cytoplasmic or nuclear abnormal bodies, inflammation, neoplasia or demyelination.

 

On the basis of the result of the brain biopsy, the patients were divided into two groups: A (Alzheimer group: patients 8 to 12) and NA (non-Alzheimer group, patients 1 to 7). Individuals from either group were similar in regard to age and sex distribution (see Table 2). In many patients, the number of cortical argyrophilic plaques exceeded by far the minimum established by Khachaturian et al (1985) for each age. Differences between mean numbers ofplaques and neurofibrillary tangles in A and NA subjects were highly significant. Time of evolution tended to be shorter in NA cases, but the difference with the A group was not significant because of the presence of patient 1, who had an unusually long course.

 

Clinico-pathological correlation

 

Family history

 

Two patients had one or more first-degree relatives with dementia. Patient 1 was 83 years old at the time of the biopsy, and his intellectual deterioration had been progressing for 10 years. His sister, aged 71, had a similar clinical picture with 15 years' evolution. This patient had few argyrophilic plaques and no neurofibrillary tangles; this pattern was considered within normal limits for his age. Patient 9, a 52-yearold woman whose diagnosis of Alzheimer's disease was confirmed by brain biopsy, belonged to an extraordinary family in that her mother, her maternal grandmother, a brother, a sister and a maternal aunt had all died after presenting a clinical picture similar to hers. Two other sisters were demented and still alive. The pattern of inheritance for this family corresponds to an autosomal dominant. Pearson's Chi-Square Test showed no statistically significant difference for this variable between the A group and the NA group.

 

Seizures

 

This variable was observed in 3 patients. Patient 8 of the A group, who had a 36-month history of behavioral changes, presented 3 episodes of generalized seizures in the last 4 months before being admitted. Patients 5 and 7, with spongiform encephalopathy, also had convulsive episodes in the last 5 months before being admitted. The difference of incidence between the two groups was not significant.

 

Speech abnormalities

 

Three out of five patients with Alzheimer's disease presented with speech abnormalities, characterized by reduced fluidity and problems for expression and comprehension. Verbal expression was, in the most severely affected patients, reduced to stereotypes, with no residual ability to communicate ideas. Patient 6 of the NA group had marked problems communicating verbally, and was limited to mumbling one of the last words said by the interviewer. The statistical significance for this variable was moderate (p < 0. 1). 278 VoL 20., No. 4,1995 July 1995

 

Table 2

 

Clinical and pathological data Case Diagnosis Age Sex Evolution (months) NFI NP 1 Non-Alzheimer 83 M 120 0 8 2 Non-Alzheimer 68 F 66 3 5 3 Non-Alzheimer 43 M 9 0 1 4 Non-Alzheimer 57 F 15 1 0 S Non-Alzheimer 56 M 16 0 0 6 Non-Alzheimer 68 F 5 0 0 7 Non-Alzheimer 61 F II 0 0 Mean 62.29 34.57 0.57 2.0 sd 12.49 M =43% 43.01 1.13 3.21 8 Alzheimer 77 M 60 2 23 9 Alzheimer 52 F 72 8 16 10 Alzheimer 65 F 36 5 14 11 Alzheimer 69 M 19 3 35 12 Alzheimer 59 F 84 6 21 Mean 64.40 54.20 4.8 21.80 sd 9.53 M = 40% 26.50 2.39 8.23 F= 0.10 0.45 17.1 34.36 p n.s. n.s. n.s. p <0 .01="" 0.01="" age="" div="" expressed="" in="" is="" millimeter="" n.s.="not" neuritic="" neurofibrillary="" nft="numbers" np="numbers" of="" p="" per="" plaques="" significant.="" square="" tangles="" years="">
 

Cerebellar changes

 

All patients with Alzheimer's disease performed adequately at the tests for coordination, albeit slowly. Among the NA patients, only one woman (number 6) showed generalized incoordination, with dysmetria and truncal ataxia. There was no significant difference between the A group and the NA group regarding this variable.

 

Delirium

 

Relatives of most patients from both groups attested to delirious episodes, with restlessness, visual and auditory hallucination and disorientation. There was no significant difference between the groups.

 

Abnormal movements

 

These movements manifested as intentional tremor of hands. Again, the difference was not significant. None of the cases diagnosed histologically as Jakob-Creutzfeldt disease had myoclonic jerks.

 

Pyramidal abnormalities

 

Three subjects for each group showed mild generalized spasticity, gastrocnemial clonus and bilateral Babinski sign. The difference was not significant.

 

Primitive reflexes

 

Suction, searching, palmar and plantar grasping reflexes were present in all patients with Alzheimer's disease and 3 out of 7 NA individuals. The level of significance was p <0 .04.="" div="">
 

Impairment of memory

 

Impairment involves both short-term and long-term memory consolidation and retrieval. All patients with Alzheimer's disease were severely affected, as were 5 out of 7 from the NA group. The remaining 2 NA subjects showed a moderate to slight impairment. There was no statistically significant difference between the A group and the NA group. Impairment of abstraction, Judgment alterations and acalculia The first 2 features were characteristic of Alzheimer cases and were present in all patients. Acalculia was observed in all patients with Alzheimer's disease but one, in contrast to 1 out of 7 NA cases. In some A individuals, acalculia presented early in the course of the disease. Regarding all 3 features, there was a significant difference (p < 0.05) between the A group and the NA group.

 

Dementia 279

 

Journal of Psychiatry & Neuroscience

 

Table 3

 

Summary of clinical variables in Alzheimer (A) and non-Alzheimer (NA) patients (see text)

 

A Group NA Group

 

n=5 Family history Seizures Speech changes Cerebellar abnormalities Delirium Abnornal movements Pyramidal abnormalities Primitive reflexes Impaired memory Impaired abstraction Judgment alterations Acalculia Dysarthria Apraxia Agnosia T-s 1 2 3 0 4 2 3 5 S S 5 4 2 2 2 Incontinence I Disorientation 3 Abnormal EEG 5 n.s.: difference statistically not significant; +: 0.05 < p < 0.10; ++: p < 0.05. n=7 1 1 5 3 3 3 5 2 1 4 3 4 1 3 Significance n.s. n.s. n.s. n.s. n.s. n.s. n.s. ++ n.s. ++ ++ ++ n.s. n.s. n.s. n.s. n.s.

 

Dysarthria, apraxia and agnosia

 

There was no significant difference in any ofthese features between the A group and the NA group.

 

Incontinence

 

Although this symptom was more common in the NA group, the difference was, once more, not significant. Disorientation

 

Three out of five patients with Alzheimer's disease were disoriented in time and space, compared with 1 out of 7 NA patients. The difference was not significant.

 

Abnormal EEG

 

Electroencephalographic changes, characterized by deficient organization and a generalized slow activity was found in all A patients, and in 3 out of 7 NA patients. The significance of the difference was moderate (p < 0.07).

 

None of the patients presented headache, fever, vertigo or cranial nerve changes. The above discussed variables are shown in Table 3.

 

Logistic discriminant functions

 

The joint effects of the variables were selected in stages because of the small sample size. Although good fitting models were obtained, none achieved a perfect discrimination. Among the models with two variables, alterations in judgment and acalculia gave the best fit (deviance 4.50 with 9 d]) and only I patient with Alzheimer's disease was misclassified (see Table 4).

 

DISCUSSION

 

The rates of accuracy of the clinical diagnosis of Alzheimer's disease in several clinico-pathological studies range from 43% to 87% (Joachim et al 1988; Mosla et al 1985; Muller and Schwartz 1978; Nott and Fleminger 1975; Sulkava et al 1983; Todorov et al 1975; Wade et al 1987). It should be interesting, therefore, if selected clinical data could help to reach this diagnosis without the aid of a brain biopsy. The results of this study show a very significant association of Alzheimer's disease with the following variables: primitive reflexes, impairment of abstraction, changes in judgment and acalculia. In studying the joint effect of 280 VoL 20, No. 4,1995

 

July 1995 Dementia 281

 

Table 4 Fitting model including alteradons ofjudgment and acalculia Case Diagnosis Fitted I NA 0.250 2 NA 0.000 3 NA 0.250 4 NA 0.250 5 NA 0.000 6 NA 0.000 7 NA 0.000 8 A 1.000 9 A 1.000 10 A 1.000 11 A 0.250+ 12 A 1.000 NA = non-Alzheimer; A = Alzheimer; + = misclassified Alzheimer patient variables, it was seen that alterations of judgment and acalculia produced the best fit.

 

The sample in this study may be considered small for the purpose of selecting a set of signs and symptoms that can characterize Alzheimer's disease clinically. However, it is not an easy task to obtain the permission to perform a brain biopsy which is of no benefit for the patient when the relative is informed of the risks involved.

 

The definite diagnosis of Alzheimer's disease depends on the microscopical examination of brain tissue, either by autopsy or biopsy. In the USA, the Alzheimer Disease Research Center of the University of Pittsburgh has launched a public campaign to encourage relatives of demented patients to request a postmortem examination of the brain (Boller et al 1989). However, in Mexico, a similar campaign has enjoyed little success so far for several reasons. The patient who suffers from Alzheimer's disease usually dies at home. The relatives, who are already exhausted by the demands of caretaking, obtain a death certificate from the family physician, and proceed quickly to the funeral rites. The few families who do request an autopsy are almost invariably denied admission to the hospital where the patient had been admitted because cadavers without a death certificate must be sent to the police department for autopsy. Many patients die in small towns or villages where there are no pathologists, let alone neuropathologists. Therefore, brain biopsy remains the only possibility for confirming the clinical diagnosis. It is true that there is no benefit derived by the patient from this procedure and that he or she faces surgical and anesthetic risks. In contrast, brain biopsy allows: 1. the development of new diagnostic procedures that might, in the future, replace it; 2. adequate genetic counselling in cases with an autosomal dominant pattern of inheritance, so that family members can take part in studies at the molecular biology level; and 3. the performance of therapeutic trials and of epidemiological surveys in Mexico.

 

Familiar aggregation has been demonstrated in 40% of cases of Alzheimer's disease. In 15% of these cases, the pattern of inheritance was autosomal dominant (Heston et al 1981). Patient number nine's family is an example of the latter, and showed an early age of onset.

 

Vacuolar change, similar to that present in Jakob- Creutzfeldt disease, has been described in brains of patients with Alzheimer's disease, especially at the medial temporal isocortex, where it has a high, statistically significant association with the presence of large numbers of neurofibrillary tangles and argyrophilic plaques (Smith et al 1987). This study considered the possibility that cases 5 to 7, diagnosed as Jakob-Creutzfeldt disease, could be, in fact, Alzheimer cases with this peculiar vacuolar change. A good method for separating the two entities would be the use of antibodies against prion (Pr-P) proteins (Tateishi et al 1988), which were, unfortunately, not available to the authors. However, none of these cases showed positivity for A4 protein, neither had one single argyrophilic plaque or tangle. Moreover, the biopsies were taken from the frontal regions, which are reported to be free of involvement in instances of Alzheimer's disease with vacuolar changes (Smith et al 1987).

 

Although the diagnosis of probable Alzheimer's disease was made in all of the patients in this study, according to the criteria established by McKhann et al (1984), this diagnosis was confirmed in only 47.1% of them. This low rate might be the result of several factors. The National Institute of Neurology and Neurosurgery in Mexico City is an institution that concentrates especially on difficult or unusual cases that are referred from all over the country. Therefore, it received a biased sample that included as many as 3 cases of spongiform encephalopathy. In addition, it is important to remember that a small, 1 cubic centimeter sample of cortex and white matter may not be representative of the extent of the damage in other areas of the brain, and so, correlates poorly with the clinical picture. This illustration is particularly true of cases 1 to 4, which did not fit into any of the pathological entities that manifest clinically as dementia. To understand more clearly the relation between damage and clinical impairment, further prospective studies using autopsy material are needed.

 

REFERENCES

 

American Psychiatric Association. 1987. Diagnostic and statistical manual of mental disorders. 3rd ed., revised. Washington DC: American Psychiatric Association. 282 Journal ofPsychiaty & Neuroscience VoL 20, No. 4,1995 Boller F, Lopez OL, Moossy J. 1989. Diagnosis of dementia: clinicopathologic correlations. Neurology 39:76-79. Crystal H, Dickson D, Fuld P, Masur D, Scott R, Mehler M, Masdeu J, Kawas C, Aronson M, Wolfson L. 1988. Clinico-pathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer's disease. Neurology 38: 1682-1687. De la Monte SM. 1989. Quantitation of cerebral atrophy in preclinical and end-stage Alzheimer's disease. Ann Neurol 25:450-459. Heston LL, Mastri AR, Andersen E, White V. 1981. Dementia of the Alzheimer type. Arch Gen Psychiat 38:1085- 1090. Joachim CL, Morris JH, Selkoe DJ. 1988. Clinically diagnosed Alzheimer's disease: autopsy results in 150 cases. Ann Neurol 24:50-56. Karp HR, Mirra SS. 1986. Dementia in adults. In: Joynt RJ, editor. Clinical neurology. Philadelphia PA: Lippincott. pp 1-74. Khachaturian ZS. 1985. Diagnosis of Alzheimer's disease. Arch Neurol 42:1097-1104. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. 1984. Clinical diagnosis of Alzheimer's disease. Neurology 34:939-944. Mosla PK, Paijarvi L, Rinne JO, Rinne UK, Sako E. 1985. Validity of clinical diagnosis in dementia: a prospective clinicopathological study. J Neurol Neurosurg Psychiatry 48:1085-1090. Muller HF, Schwartz G. 1978. Electroencephalograms and autopsy findings in geropsychiatry. J Geront 4:504-513. Nott PN, Fleminger JJ. 1975. Presenile dementia: the difficulties of early diagnosis. Acta Psychiatr Scand 51: 210- 217. Smith TW, Anwer U, DeGirolami U, Drachman DA. 1987. Vacuolar change in Alzheimer's disease. Arch Neurol 44:1225-1228. Sulkava R, Haltia M, Paetau A, Wikstrom JU, Palo J. 1983. Accuracy of clinical diagnosis in primary degenerative dementia: correlation with neuropathological findings. J Neurol Neurosurg Psychiatry 46:9-13. Tateishi J, Tetsuyuki K, Mashigu Chi M, Shii M. 1988. Gerstmann Straussler-Scheinker disease: immunohistological and experimental studies. Ann Neurol 24:35-40. Todorov A, Go R, Constantinidis J, Eiston R. 1975. Specificity of the clinical diagnosis of dementia. J Neurol Sci 26:81-98. Wade JPH, Mirsen TR, Hachinski VC, Fisman M, Lau C, Merskey H. 1987. The clinical diagnosis of Alzheimer's disease. Arch Neurol 44:24-29.tss

 

===============================

 

Subject: Re: Hello Dr. Manuelidis

 

Date: Fri, 22 Dec 2000 17:47:09 –0500

 

From: laura manuelidis mailto:laura.manuelidis%40yale.edu

 

Reply-To: mailto:laura.manuelidis%40yale.edu Organization: Yale Medical School

 

To: "Terry S. Singeltary Sr."

 

References: <

 

Dear Terry,

 

One of our papers (in Alzheimer's Disease Related Disord. 3:100-109, 1989) in text cites 6 of 46 (13%) of clinical AD as CJD. There may be a later paper from another lab showing the same higher than expected incidence but I can't put my hands on it right now. We also have a lot of papers from 1985 on stating that there are likely many silent (non-clinical) CJD infections, i.e. much greater than the "tip of the iceberg" of long standing end-stage cases with clinical symptoms. Hope this helps.

 

best wishes for the new year laura manuelidis

 

"Terry S. Singeltary Sr." wrote:

 

> > Hello again Dr. Manuelidis,

 

> > could you please help me locate the 2 studies that were

 

> done on CJD where it showed that up to 13% of the people

 

> diagnosed as having Alzheimer's actually had CJD.

 

> trying to find reference...

 

> > thank you,

 

> Terry S. Singeltary Sr.

 

=====================end...2014...tss=============

 

Friday, January 31, 2014

 

*** Confidentiality in preclinical Alzheimer disease studies ***

 


 

Saturday, November 16, 2013

 

Management of neurosurgical instruments and patients exposed to creutzfeldt-jakob disease 2013 December

 

Infect Control Hosp Epidemiol.

 


 

Friday, January 10, 2014

 

*** vpspr, sgss, sffi, TSE, an iatrogenic by-product of gss, ffi, familial type prion disease, what it ???

 


 

Wednesday, January 15, 2014

 

*** INFECTION PREVENTION AND CONTROL OF CJD, VCJD AND OTHER HUMAN PRION DISEASES IN HEALTHCARE AND COMMUNITY SETTINGS Variably Protease-Sensitive Prionopathy (VPSPr) January 15, 2014

 


 

Thursday, February 06, 2014

 

*** Commons Science and Technology Committee announce new inquiry on blood, tissue and organ screening Parliament exposure vcjd and blood risk while still ignoring recent risks factors of sporadic CJD

 


 

Friday, February 14, 2014

 

Creutzfeldt-Jakob disease (CJD) biannual update (February 2014), with briefing on novel human prion disease National CJD Research and Surveillance Unit NCJDRSU

 


 

Tuesday, February 11, 2014

 

Novant Health Forsyth Medical Center Information on potential CJD exposure

 


 

I suppose one of the most disturbing studies I have ever read, was the one of Gibbs et al, way back, with electrodes that caused CJD, again, and again.

 

I am not posting this to scare folks, so be it if it does, but I am posting this for you to see what you are dealing with. ...this study still amazes me. read it more than once.

 

please see ;

 

1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8

 

*** Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery.

 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC.

 

Laboratory of Central Nervous System Studies, National Institute of

 

Neurological Disorders and Stroke, National Institutes of Health,

 

Bethesda, MD 20892.

 

*** Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them.

 

PMID: 8006664 [PubMed - indexed for MEDLINE]

 


 

New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication

 


 

Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production

 


 

Detection of protease-resistant cervid prion protein in water from a CWD-endemic area

 


 

A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing

 


 

 Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals

 


 

PPo4-4:

 

Survival and Limited Spread of TSE Infectivity after Burial

 


 

Tuesday, March 11, 2014

 

Science and Technology Committee Oral evidence: Blood, tissue and organ screening, HC 990 Wednesday 5 March 2014 SPORADIC CJD

 

Actually, it is nearer 2 per million per year of the population will develop sporadic CJD, but your lifetime risk of developing sporadic CJD is about 1 in 30,000. So that has not really changed. When people talk about 1 per million, often they interpret that as thinking it is incredibly rare. They think they have a 1-in-a-million chance of developing this disease. You haven’t. You’ve got about a 1-in-30,000 chance of developing it.

 


 

TSS