Vol. 66 No. 10, October 2009
Codistribution of Amyloid ß Plaques and Spongiform Degeneration in Familial Creutzfeldt-Jakob Disease With the E200K-129M Haplotype
Nupur Ghoshal, MD, PhD; Ignazio Cali, MS; Richard Justin Perrin, MD, PhD; S. Andrew Josephson, MD; Ning Sun, MD, PhD; Pierluigi Gambetti, MD; John Carl Morris, MD
Arch Neurol. 2009;66(10):1240-1246.
Background Dominantly inherited Creutzfeldt-Jakob disease (CJD) represents 5% to 15% of all CJD cases. The E200K mutation in the prion protein (PrP) gene (PRNP) is the most frequent cause of familial CJD. Coexistent amyloid ß (Aß) plaques have been reported in some transmissible spongiform encephalopathies but to date have not been reported in familial CJD with the E200K mutation.
Objective To characterize a family with CJD in which Aß plaques codistribute with spongiform degeneration.
Design Clinicopathologic and molecular study of a family with CJD with the E200K-129M haplotype.
Setting Alzheimer disease research center.
Participants Two generations of a family.
Main Outcome Measures Clinical, biochemical, and neuropathologic observations in 2 generations of a family.
Results In this kindred, 3 autopsied cases showed pathologic changes typical for the E200K-129M haplotype, including spongiform degeneration, gliosis, neuronal loss, and PrP deposition. Moreover, 2 of these cases (ages 57 and 63 years) showed numerous Aß plaques codistributed with spongiform degeneration. APOE genotyping in 2 cases revealed that Aß plaques were present in the APOE 4 carrier but not in the APOE 4 noncarrier. Two additional cases exhibited incomplete penetrance, as they had no clinical evidence of CJD at death after age 80 years but had affected siblings and children.
Conclusions To our knowledge, this is the first description of Aß plaques in familial CJD with the E200K mutation. The codistribution of plaques and CJD-associated changes suggests that PrP plays a central role in Aß formation and that Aß pathology and prion disease likely in fluence each other. The kindred described herein provides support that PrPE200K may result in increased Aß deposition.
Author Affiliations: Department of Neurology and Alzheimer's Disease Research Center (Drs Ghoshal, Perrin, and Morris) and Division of Neuropathology, Department of Pathology and Immunology (Drs Perrin and Morris), Washington University School of Medicine, St Louis, Missouri; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, Ohio (Mr Cali and Dr Gambetti); Department of Neurology, University of California, San Francisco (Dr Josephson); and DuPage Neurological Associates, Willowbrook, Illinois (Dr Sun).
http://archneur.ama-assn.org/cgi/content/short/66/10/1240
Saturday, October 31, 2009
Involvement of Dab1 in APP processing and ß-amyloid deposition in sporadic Creutzfeldt–Jakob patients
http://betaamyloidcjd.blogspot.com/2009/10/involvement-of-dab1-in-app-processing.html
SEAC OCTOBER 2009
. Are some commoner types of neurodegenerative disease (including Alzheimer's disease and Parkinson's disease) also transmissible? Some recent scientific research has suggested this possibility
http://www.seac.gov.uk/pdf/hol-response091008.pdf
Thursday, February 26, 2009
'Harmless' prion protein linked to Alzheimer's disease Non-infectious form of prion protein could cause brain degeneration ???
http://betaamyloidcjd.blogspot.com/2009/02/harmless-prion-protein-linked-to.html
CJD1/9 0185
Ref: 1M51A
IN STRICT CONFIDENCE
TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
1. CMO will wish to be aware that a meeting was held at DH yesterday, 4 January, to discuss the above findings. It was chaired by Professor Murray (Chairman of the MRC Co-ordinating Committee on Research in the Spongiform Encephalopathies in Man), and attended by relevant experts in the fields of Neurology, Neuropathology, molecular biology, amyloid biochemistry, and the spongiform encephalopathies, and by representatives of the MRC and AFRC.
2. Briefly, the meeting agreed that:
i) Dr Ridley et als findings of experimental induction of p amyloid in primates were valid, interesting and a significant advance in the understanding of neurodegeneradve disorders;
ii) there were no immediate implications for the public health, and no further safeguards were thought to be necessary at present; and
iii) additional research was desirable, both epidemiological and at the molecular level. Possible avenues are being followed up by DH and the MRC, but the details will require further discussion.
93/01.05/4.1tss
http://web.archive.org/web/20010305223440/www.bseinquiry.gov.uk/files/yb/1993/01/05004001.pdf
Regarding Alzheimer's disease
(note the substantial increase on a yearly basis)
http://web.archive.org/web/20010305222847/www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
snip...
The pathogenesis of these diseases was compared to Alzheimer's disease at a molecular level...
snip...
http://web.archive.org/web/20010305223234/www.bseinquiry.gov.uk/files/yb/1990/03/12003001.pdf
And NONE of this is relevant to BSE?
There is also the matter whether the spectrum of ''prion disease'' is wider than that recognized at present.
http://web.archive.org/web/20010305223234/www.bseinquiry.gov.uk/files/yb/1990/07/06005001.pdf
http://web.archive.org/web/20010305223234/www.bseinquiry.gov.uk/files/yb/1990/07/09001001.pdf
BSE101/1 0136
IN CONFIDENCE
5 NOV 1992
CMO From: Dr J S Metters DCMO 4 November 1992
TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES
http://web.archive.org/web/20010305223143/www.bseinquiry.gov.uk/files/yb/1992/11/04001001.pdf
also, see the increase of Alzheimer's from 1981 to 1986
http://web.archive.org/web/20010305222847/www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
Tuesday, August 26, 2008
Alzheimer's Transmission of AA-amyloidosis: Similarities with Prion Disorders NEUROPRION 2007 FC4.3
http://betaamyloidcjd.blogspot.com/2008/08/alzheimers-transmission-of-aa.html
see full text ;
http://betaamyloidcjd.blogspot.com/2009/02/harmless-prion-protein-linked-to.html
Alzheimer's and CJD
http://betaamyloidcjd.blogspot.com/
Saturday, March 22, 2008
10 Million Baby Boomers to have Alzheimer's in the coming decades 2008 Alzheimer's disease facts and figures
http://betaamyloidcjd.blogspot.com/2008/03/association-between-deposition-of-beta.html
re-Association between Deposition of Beta-Amyloid and Pathological Prion Protein in Sporadic Creutzfeldt-Jakob Disease
http://betaamyloidcjd.blogspot.com/2008/04/re-association-between-deposition-of.html
Monday, October 12, 2009
SEAC Science and Technology Committee's investigation of research funding priorities on behalf of the Advisory Committee on Dangerous Pathogens TSE 8 October 2009
http://bse-atypical.blogspot.com/2009/10/seac-science-and-technology-committees.html
Sunday, August 10, 2008
A New Prionopathy OR more of the same old BSe and sporadic CJD
http://creutzfeldt-jakob-disease.blogspot.com/2008/08/new-prionopathy-or-more-of-same-old-bse.html
TSS
Saturday, November 14, 2009
Saturday, October 31, 2009
Involvement of Dab1 in APP processing and ß-amyloid deposition in sporadic Creutzfeldt–Jakob patients
Copyright © 2009 Published by Elsevier Inc.
Involvement of Dab1 in APP processing and ß-amyloid deposition in sporadic Creutzfeldt–Jakob patients
References and further reading may be available for this article. To view references and further reading you must purchase this article.
R. Gavína, c, I. Ferrerb, c, , and J.A. del Ríoa, c, ,
aMolecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia and Department of Cell Biology, University of Barcelona, Baldiri Reixac 15-21, 08028 Barcelona, Spain
bInstitute of Neuropathology (INP), IDIBELL-Hospital Universitari de Bellvitge, Faculty of Medicine, University of Barcelona, 08907 Hospitalet de LLobregat, Barcelona, Spain
cCentro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
Received 27 March 2009; revised 5 October 2009; accepted 10 October 2009. Available online 21 October 2009.
Abstract Alzheimer's disease and prion pathologies (e.g., Creutzfeldt–Jakob disease (CJD)) display profound neural lesions associated with aberrant protein processing and extracellular amyloid deposits. Dab1 has been implicated in the regulation of amyloid precursor protein (APP), but a direct link between human prion diseases and Dab1/APP interactions has not been published. Here we examined this putative relationship in 17 cases of sporadic CJD (sCJD) post-mortem. Biochemical analyses of brain tissue revealed two groups, which also correlated with PrPsc types 1 and 2. One group with PrPsc type 1 showed increased Dab1 phosphorylation and lower ßCTF production with an absence of Aß deposition. The second sCJD group, which carried PrPsc type 2, showed lower levels of Dab1 phosphorylation and ßCTF production, and Aß deposition. Thus, the present observations suggest a correlation between Dab1 phosphorylation, Aß deposition and PrPsc type in sCJD.
Keywords: Prionopathies; Amyloid plaques; Alzheimer's disease; Dab1
Article Outline Introduction Patients and methods Cases PrP typing Codon 129 genotyping Immunoprecipitation and Western immunoblotting Densitometry and statistical processing Results Analysis of Dab1 phosphorylation revealed two groups of sCJD cases ßCTF production and Aß deposition in sCJD Correlation between codon 129 polymorphism with PrPsc type and Aß deposits in sCJD groups Discussion Acknowledgements References
Fig. 1. Patterns of PrPsc type 1 and type 2 (PK: proteinase K pre-treatment). Three examples of PrPsc processing are illustrated. Every sample is run in parallel with a negative control (lane 1), a typical case of PrPsc type 1 (lane 2), a typical case type 2 (lane 3) and the case problem (lane 4).
View Within Article
--------------------------------------------------------------------------------
Fig. 2. Example of Western blot determination of pDab1 (A and B) and total Dab1 protein levels (C and D) in sCJD cases. sCJD cases were categorized as described above. Protein samples from different groups of sCJD (first and second groups) are shown. (B) The densitometric results are shown. Each data item corresponding to a sCJD case is displayed in the histograms. In addition, the mean and SEM in each group is also shown. A significant increase in the pDab1/Dab1 ratio is observed in the first group of sCJD cases compared to the second sCJD group and controls. (C and D) Parallel determination of total Dab1 levels in the same sCJD protein samples. The increased phosphorylation of Dab1 in the first sCJD cases correlates with decreased levels of total protein. Each dot corresponds to a single case. Asterisks indicate significant differences between sCJD groups and controls in (B) and (D). p < 0.05; p < 0.01 (ANOVA test). View Within Article --------------------------------------------------------------------------------
Fig. 3. Example of Western blotting determination of ßCTF (A and B) in sCJD cases compared to controls. sCJD cases were categorized as described above. Decreased levels of ßCTF can be seen in the first sCJD group compared to controls. (B) Histograms showing the densitometric study as in Fig. 2. Each dot corresponds to a single case. Asterisks indicate significant differences between sCJD groups and controls. p < 0.05 (ANOVA test). View Within Article --------------------------------------------------------------------------------
Fig. 4. Double-Y graphs illustrating the densitometric results of pDab1/Dab1 ratio (left Y axis) and CTFß levels (blue right Y axis) for each case (X axis). Each dot/square corresponds to a single case. Values of pDab1/Dab1 (black squares) and CTFß (blue circles) have been linked with a line and the area (grey for pDab1/Dab1 and violet for CTFß) has been completed for each patient group. Notice the clear differences in the distribution of the grey and violet areas between the 1st and the 2nd group of sCJD cases and controls. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) View Within Article --------------------------------------------------------------------------------
Fig. 5. Low power photomicrographs illustrating examples of amyloid plaques in some of the sCJD cases used in the present study after Aß immunocytochemistry. (A) No plaques (score 0). (B) A few diffuse plaques (score +). (C) Many diffuse plaques, some neuritic plaques (score ++). See Results for details. Scale bar (A) = 500 µm pertains to (B) and (C). View Within Article --------------------------------------------------------------------------------
Table 1. Main clinical characteristics of sCJD and control cases in the present study. F: female; M: male; M: methionine; V: valine; PrP type: PrPsc type 1: lower band of glycosylated PrPsc of 21 kDa; type 2: lower band of glycosylated PrPsc of 10 kDa. Aß plaques: 0, no plaques; +, a few diffuse plaques; ++, many diffuse plaques and some neuritic plaques. View Within Article Corresponding authors. J.A. del Río is to be contacted at MCN lab Institute of Bioengineering of Catalonia Baldiri and Reixac 15-20, 08028 Barcelona, Spain. Fax: +34 934020183. I. Ferrer, Institut de Neuropatologia Servei Anatomia Patològica IDIBELL-Hospital Universitari de Bellvitge Facultat de Medicina Universitat de Barcelona Feixa LLarga sn, 08907 Hospitalet de LLobregat, Barcelona, Spain. Fax: +34 934035810.
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WNK-4XH5MGD-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=77549367eefa411de83e198f26401bcc
TSS
----- Original Message -----
From: "Terry S. Singeltary Sr."
To:
Sent: Monday, October 12, 2009 9:47 AM
Subject: [BSE-L] SEAC Science and Technology Committee's investigation of research funding priorities on behalf of the Advisory Committee on Dangerous Pathogens Transmissible Spongiform Encephalopathy
-------------------- BSE-L@LISTS.AEGEE.ORG --------------------
snip...
. More specific examples of unanswered questions with health implications are:
. Will the eventual elimination of classical scrapie in the EU leave an ecological niche for other TSEs such as BSE or atypical scrapie?
. Is CWD transmissible to humans?
. Can a reliable ante mortem diagnostic blood test for vCJD be developed?
. What is the true prevalence of v CJD infection (as opposed to overt disease) in the UK?
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
--------------------------------------------------------------------------------
. Are some commoner types of neurodegenerative disease (including Alzheimer's disease and Parkinson's disease) also transmissible? Some recent scientific research has suggested this possibility
--------------------------------------------------------------------------------
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
. Could cases of protease sensitive prionopathy (PSP) be missed by conventional tests which, in all other TSEs, rely on the resistance of the prion protein in the nervous system that accompanies disease to digestion by protease enzymes?
. Can we develop reliable methods for removing and detecting protein on re-usable surgical instruments?
SNIP...
FULL TEXT ;
Monday, October 12, 2009
SEAC Science and Technology Committee's investigation of research funding priorities on behalf of the Advisory Committee on Dangerous Pathogens TSE 8 October 2009
http://bse-atypical.blogspot.com/2009/10/seac-science-and-technology-committees.html
----- Original Message -----
From: "Terry S. Singeltary Sr."
To:
Sent: Monday, June 29, 2009 2:08 PM
Subject: [BSE-L] Beyond the prion principle
-------------------- BSE-L@LISTS.AEGEE.ORG --------------------
News and Views Nature 459, 924-925 (18 June 2009) doi:10.1038/459924a; Published online 17 June 2009
CELL BIOLOGY
Beyond the prion principle
Adriano Aguzzi
It seems that many misfolded proteins can act like prions - spreading disease by imparting their misshapen structure to normal cellular counterparts. But how common are bona fide prions really?
The protein-only hypothesis of prion propagation is steadily gaining ground. First envisaged by John Stanley Griffith1 and later formalized by Stanley Prusiner2, this theory proposes the existence of an infectious agent composed solely of protein. Three reports, two in Nature Cell Biology3,4 and one in The Journal of Cell Biology5, now contend that, far from being confined to the rare prion diseases, prion-like transmission of altered proteins may occur in several human diseases of the brain and other organs.
Prions are now accepted as causing the transmissible spongiform encephalopathies, which include scrapie in sheep, bovine spongiform encephalopathy (BSE, or mad cow disease) and its human variant Creutzfeldt-Jakob disease. The infectious prion particle is made up of PrPSc, a misfolded and aggregated version of a normal protein known as PrPC. Like the growth of crystals, PrPSc propagates by recruiting monomeric PrPC into its aggregates - a process that has been replicated in vitro6 and in transgenic mice7. The breakage of PrPSc aggregates represents the actual replicative event, as it multiplies the number of active seeds8.
Apart from prion diseases, the misfolding and aggregation of proteins into various harmful forms, which are collectively known as amyloid, causes a range of diseases of the nervous system and other organs. The clinical characteristics of amyloidoses, however, gave little reason to suspect a relationship to prion diseases. Hints of prion-like behaviour in amyloid have emerged from studies of Alzheimer's disease and Parkinson's disease. Alzheimer's disease had been suspected to be transmissible for some time: an early report9 of disease transmission to hamsters through white blood cells from people with Alzheimer's disease caused great consternation, but was never reproduced. Much more tantalizing evidence came from the discovery10,11 that aggregates of the amyloid-â (Aâ) peptide found in the brain of people with Alzheimer's disease could be transmitted to the brain of mice engineered to produce large amounts of the Aâ precursor protein APP. Another study12 has shown that healthy tissue grafted into the brain of people with Parkinson's disease acquires intracellular Lewy bodies - aggregates of the Parkinson's disease-associated protein á-synuclein. This suggests prion-like transmission of diseased protein from the recipient's brain to the grafted cells.
These findings10-12 raise a provocative question. If protein aggregation depends on the introduction of 'seeds' and on the availability of the monomeric precursor, and if, as has been suggested13, amyloid represents the primordial state of all proteins, wouldn't all proteins - under appropriate conditions - behave like prions in the presence of sufficient precursor? Acceptance of this concept is gaining momentum. For one thing, an increasing wealth of traits is being found in yeast, fungi and bacteria that can best be explained as prion-like phenomena (see table). And now, Ren and colleagues3 provide evidence for prion-like spread of polyglutamine (polyQ)- containing protein aggregates, which are similar to the aggregates found in Huntington's disease. They show that polyQ aggregates can be taken up from the outside by mammalian cells. Once in the cytosol, the polyQ aggregates can grow by recruiting endogenous polyQ. Clavaguera et al.4 report similar findings in a mouse model of tauopathy, a neurodegenerative disease caused by intraneuronal aggregation of the microtubule-associated tau protein. Injection of mutant human tau into the brain of mice overexpressing normal human tau transmitted tauopathy, with intracellular aggregation of previously normal tau and spread of aggregates to neighbouring regions of the brain. Notably, full-blown tauopathy was not induced in mice that did not express human tau. Assuming that tau pathology wasn't elicited by some indirect pathway (some mice overexpressing mutated human tau develop protein tangles even when exposed to un related amyloid aggregates14), this sequence of events is reminiscent of prions. Finally, Frost and colleagues5 show that extracellular tau aggregates can be taken up by cells in culture. Hence, tau can attack and penetrate cells from the outside, sporting predatory behaviour akin to that of prions.
Yet there is one crucial difference between actual prion diseases and diseases caused by other prion-like proteins (let's call them prionoids) described so far (see table). The behaviour of prions is entirely comparable to that of any other infectious agent: for instance, prions are transmissible between individuals and often across species, and can be assayed with classic microbiological techniques, including titration by bioassay. Accordingly, prion diseases were long thought to be caused by viruses, and BSE created a worldwide panic similar to that currently being provoked by influenza. By contrast, although prionoids can 'infect' neighbouring molecules and sometimes even neighbouring cells, they do not spread within communities or cause epidemics such as those seen with BSE.
So, should any amyloid deserve an upgrade to a bone fide prion status? Currently, amyloid A (AA) amyloidosis may be the most promising candidate for a truly infectious disease caused by a self-propagating protein other than PrPSc. AA amyloid consists of orderly aggregated fragments of the SAA protein, and its deposition damages many organs of the body. Seeds of AA amyloid can be excreted in faeces15, and can induce amyloidosis if taken up orally (at least in geese)16. Also, AA amyloid may be transmitted between mice by transfusion of white blood cells17. So, like entero viruses and, perhaps, sheep scrapie prions, AA amyloid seems to display all the elements of a complete infectious life cycle, including uptake, replication and release from its host.
There are intriguing evolutionary implications to the above findings. If prionoids are ubiquitous, why didn't evolution erect barriers to their pervasiveness? Maybe it is because the molecular transmissibility of aggregated states can sometimes be useful. Indeed, aggregation of the Sup35 protein, which leads to a prion-like phenomenon in yeast, may promote evolutionary adaptation by allowing yeast cells to temporarily activate DNA sequences that are normally untranslated18. Mammals have developed receptors for aggregates, and ironically PrPC may be one of them19, although these receptors have not been reported to mediate protective functions. Therefore, we shouldn't be shocked if instances of beneficial prionoids emerge in mammals as well. ¦
Adriano Aguzzi is at the Institute of Neuropathology, University Hospital of Zurich, CH-8091 Zurich, Switzerland. e-mail: adriano.aguzzi@usz.ch
1. Griffith, J. S. Nature 215, 1043-1044 (1967). 2. Prusiner, S. B. Science 216, 136-144 (1982). 3. Ren, P.-H. et al. Nature Cell Biol. 11, 219-225 (2009). 4. Clavaguera, F. et al. Nature Cell Biol. doi:10.1038/ncb1901 (2009). 5. Frost, B., Jacks, R. L. & Diamond, M. I. J. Biol. Chem. 284, 12845-12852 (2009). 6. Castilla, J., Saá, P., Hetz, C. & Soto, C. Cell 121, 195-206 (2005). 7. Sigurdson, C. J. et al. Proc. Natl Acad. Sci. USA 106, 304-309 (2009). 8. Aguzzi, A. & Polymenidou, M. Cell 116, 313-327 (2004). 9. Manuelidis, E. E. et al. Proc. Natl Acad. Sci. USA 85, 4898-4901 (1988). 10. Kane, M. D. et al. J. Neurosci. 20, 3606-3611 (2000). 11. Meyer-Luehmann, M. et al. Science 313, 1781-1784 (2006). 12. Li, J.-Y. et al. Nature Med. 14, 501-503 (2008). 13. Chiti, F. & Dobson, C. M. Annu. Rev. Biochem. 75, 333-366 (2006). 14. GÖtz, J., Chen, F., van Dorpe, J. & Nitsch, R. M. Science 293, 1491-1495 (2001). 15. Zhang, B. et al. Proc. Natl Acad. Sci. USA 105, 7263-7268 (2008). 16. Solomon, A. et al. Proc. Natl Acad. Sci. USA 104, 10998-11001 (2007). 17. Sponarova, J., NystrÖm, S. N. & Westermark, G. T. PLoS ONE 3, e3308 (2008). 18. True, H. L. & Lindquist, S. L. Nature 407, 477-483 (2000). 19. Laurén, J. et al. Nature 457, 1128-1132 (2009).
PRIONS AND POTENTIAL PRIONOIDS
Disease Protein Molecular transmissibility Infectious life cycle Prion diseases PrPSc Yes Yes Alzheimer's disease Amyloid-ß Yes Not shown Tauopathies Tau Yes Not shown Parkinson's disease a-Synuclein Host-to-graft Not shown AA amyloidosis Amyloid A Yes Possible Huntington's disease Polyglutamine Yes Not shown Phenotype Protein Molecular transmissibility Infectious life cycle Suppressed translational termination (yeast) Sup35 Yes Not shown Heterokaryon incompatibility (filamentous fungi) Het-s Yes Not shown Biofilm promotion (bacteria) CsgA Yes Not shown In humans and animals, infectious prion diseases are caused by PrPSc, which spreads by recruiting its monomeric precursor PrPC into aggregates. Aggregates then multiply by breakage, a process that is termed molecular transmissibility. Other proteins involved in disease and in phenotypes of fungi and bacteria, can also undergo self-sustaining aggregation, but none of these 'prionoid' proteins behaves like typical infectious agents, nor do any of them enact a complete infectious life cycle - with the possible exception of AA amyloid. Correction In the News & Views article "Immunology: Immunity's ancient arms" by Gary W. Litman and John P. Cannon (Nature 459, 784-786; 2009), the name of the fi rst author of the Nature paper under discussion was misspelt. The author's name is P. Guo, not Gou as published.
© 2009 Macmillan Publishers Limited. All rights reserved
http://www.nature.com/nature/journal/v459/n7249/full/459924a.html
Thursday, February 26, 2009
'Harmless' prion protein linked to Alzheimer's disease Non-infectious form of prion protein could cause brain degeneration ???
http://betaamyloidcjd.blogspot.com/2009/02/harmless-prion-protein-linked-to.html
IN STRICT CONFIDENCE
TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
http://www.bseinquiry.gov.uk/files/yb/1993/01/05004001.pdf
CJD1/9 0185
Ref: 1M51A
IN STRICT CONFIDENCE
TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
1. CMO will wish to be aware that a meeting was held at DH yesterday, 4 January, to discuss the above findings. It was chaired by Professor Murray (Chairman of the MRC Co-ordinating Committee on Research in the Spongiform Encephalopathies in Man), and attended by relevant experts in the fields of Neurology, Neuropathology, molecular biology, amyloid biochemistry, and the spongiform encephalopathies, and by representatives of the MRC and AFRC.
2. Briefly, the meeting agreed that:
i) Dr Ridley et als findings of experimental induction of p amyloid in primates were valid, interesting and a significant advance in the understanding of neurodegeneradve disorders;
ii) there were no immediate implications for the public health, and no further safeguards were thought to be necessary at present; and
iii) additional research was desirable, both epidemiological and at the molecular level. Possible avenues are being followed up by DH and the MRC, but the details will require further discussion.
93/01.05/4.1tss
http://www.bseinquiry.gov.uk/files/yb/1993/01/05004001.pdf
Regarding Alzheimer's disease
(note the substantial increase on a yearly basis)
http://www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
snip...
The pathogenesis of these diseases was compared to Alzheimer's disease at a molecular level...
snip...
http://www.bseinquiry.gov.uk/files/yb/1990/03/12003001.pdf
And NONE of this is relevant to BSE?
There is also the matter whether the spectrum of ''prion disease'' is wider than that recognized at present.
http://www.bseinquiry.gov.uk/files/yb/1990/07/06005001.pdf
THE LINE TO TAKE.
http://www.bseinquiry.gov.uk/files/yb/1990/07/09001001.pdf
BSE101/1 0136
IN CONFIDENCE
5 NOV 1992
CMO From: Dr J S Metters DCMO 4 November 1992
TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES
http://www.bseinquiry.gov.uk/files/yb/1992/11/04001001.pdf
also, see the increase of Alzheimer's from 1981 to 1986
http://www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
Occasional PrP plaques are seen in cases of Alzheimer's Disease
snip...
full text;
http://www.bseinquiry.gov.uk/files/ws/s310.pdf
Tuesday, August 26, 2008
Alzheimer's Transmission of AA-amyloidosis: Similarities with Prion Disorders NEUROPRION 2007 FC4.3
http://betaamyloidcjd.blogspot.com/2008/08/alzheimers-transmission-of-aa.html
see full text ;
http://betaamyloidcjd.blogspot.com/2009/02/harmless-prion-protein-linked-to.html
Alzheimer's and CJD
http://betaamyloidcjd.blogspot.com/
MAD COW DISEASE, AND U.S. BEEF TRADE
MAD COW DISEASE, CJD, TSE, SOUND SCIENCE, COMMERCE, AND SELLING YOUR SOUL TO THE DEVIL
http://usdameatexport.blogspot.com/2009/10/mad-cow-disease-and-us-beef-trade.html
Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA
Involvement of Dab1 in APP processing and ß-amyloid deposition in sporadic Creutzfeldt–Jakob patients
References and further reading may be available for this article. To view references and further reading you must purchase this article.
R. Gavína, c, I. Ferrerb, c, , and J.A. del Ríoa, c, ,
aMolecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia and Department of Cell Biology, University of Barcelona, Baldiri Reixac 15-21, 08028 Barcelona, Spain
bInstitute of Neuropathology (INP), IDIBELL-Hospital Universitari de Bellvitge, Faculty of Medicine, University of Barcelona, 08907 Hospitalet de LLobregat, Barcelona, Spain
cCentro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
Received 27 March 2009; revised 5 October 2009; accepted 10 October 2009. Available online 21 October 2009.
Abstract Alzheimer's disease and prion pathologies (e.g., Creutzfeldt–Jakob disease (CJD)) display profound neural lesions associated with aberrant protein processing and extracellular amyloid deposits. Dab1 has been implicated in the regulation of amyloid precursor protein (APP), but a direct link between human prion diseases and Dab1/APP interactions has not been published. Here we examined this putative relationship in 17 cases of sporadic CJD (sCJD) post-mortem. Biochemical analyses of brain tissue revealed two groups, which also correlated with PrPsc types 1 and 2. One group with PrPsc type 1 showed increased Dab1 phosphorylation and lower ßCTF production with an absence of Aß deposition. The second sCJD group, which carried PrPsc type 2, showed lower levels of Dab1 phosphorylation and ßCTF production, and Aß deposition. Thus, the present observations suggest a correlation between Dab1 phosphorylation, Aß deposition and PrPsc type in sCJD.
Keywords: Prionopathies; Amyloid plaques; Alzheimer's disease; Dab1
Article Outline Introduction Patients and methods Cases PrP typing Codon 129 genotyping Immunoprecipitation and Western immunoblotting Densitometry and statistical processing Results Analysis of Dab1 phosphorylation revealed two groups of sCJD cases ßCTF production and Aß deposition in sCJD Correlation between codon 129 polymorphism with PrPsc type and Aß deposits in sCJD groups Discussion Acknowledgements References
Fig. 1. Patterns of PrPsc type 1 and type 2 (PK: proteinase K pre-treatment). Three examples of PrPsc processing are illustrated. Every sample is run in parallel with a negative control (lane 1), a typical case of PrPsc type 1 (lane 2), a typical case type 2 (lane 3) and the case problem (lane 4).
View Within Article
--------------------------------------------------------------------------------
Fig. 2. Example of Western blot determination of pDab1 (A and B) and total Dab1 protein levels (C and D) in sCJD cases. sCJD cases were categorized as described above. Protein samples from different groups of sCJD (first and second groups) are shown. (B) The densitometric results are shown. Each data item corresponding to a sCJD case is displayed in the histograms. In addition, the mean and SEM in each group is also shown. A significant increase in the pDab1/Dab1 ratio is observed in the first group of sCJD cases compared to the second sCJD group and controls. (C and D) Parallel determination of total Dab1 levels in the same sCJD protein samples. The increased phosphorylation of Dab1 in the first sCJD cases correlates with decreased levels of total protein. Each dot corresponds to a single case. Asterisks indicate significant differences between sCJD groups and controls in (B) and (D). p < 0.05; p < 0.01 (ANOVA test). View Within Article --------------------------------------------------------------------------------
Fig. 3. Example of Western blotting determination of ßCTF (A and B) in sCJD cases compared to controls. sCJD cases were categorized as described above. Decreased levels of ßCTF can be seen in the first sCJD group compared to controls. (B) Histograms showing the densitometric study as in Fig. 2. Each dot corresponds to a single case. Asterisks indicate significant differences between sCJD groups and controls. p < 0.05 (ANOVA test). View Within Article --------------------------------------------------------------------------------
Fig. 4. Double-Y graphs illustrating the densitometric results of pDab1/Dab1 ratio (left Y axis) and CTFß levels (blue right Y axis) for each case (X axis). Each dot/square corresponds to a single case. Values of pDab1/Dab1 (black squares) and CTFß (blue circles) have been linked with a line and the area (grey for pDab1/Dab1 and violet for CTFß) has been completed for each patient group. Notice the clear differences in the distribution of the grey and violet areas between the 1st and the 2nd group of sCJD cases and controls. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) View Within Article --------------------------------------------------------------------------------
Fig. 5. Low power photomicrographs illustrating examples of amyloid plaques in some of the sCJD cases used in the present study after Aß immunocytochemistry. (A) No plaques (score 0). (B) A few diffuse plaques (score +). (C) Many diffuse plaques, some neuritic plaques (score ++). See Results for details. Scale bar (A) = 500 µm pertains to (B) and (C). View Within Article --------------------------------------------------------------------------------
Table 1. Main clinical characteristics of sCJD and control cases in the present study. F: female; M: male; M: methionine; V: valine; PrP type: PrPsc type 1: lower band of glycosylated PrPsc of 21 kDa; type 2: lower band of glycosylated PrPsc of 10 kDa. Aß plaques: 0, no plaques; +, a few diffuse plaques; ++, many diffuse plaques and some neuritic plaques. View Within Article Corresponding authors. J.A. del Río is to be contacted at MCN lab Institute of Bioengineering of Catalonia Baldiri and Reixac 15-20, 08028 Barcelona, Spain. Fax: +34 934020183. I. Ferrer, Institut de Neuropatologia Servei Anatomia Patològica IDIBELL-Hospital Universitari de Bellvitge Facultat de Medicina Universitat de Barcelona Feixa LLarga sn, 08907 Hospitalet de LLobregat, Barcelona, Spain. Fax: +34 934035810.
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WNK-4XH5MGD-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=77549367eefa411de83e198f26401bcc
TSS
----- Original Message -----
From: "Terry S. Singeltary Sr."
To:
Sent: Monday, October 12, 2009 9:47 AM
Subject: [BSE-L] SEAC Science and Technology Committee's investigation of research funding priorities on behalf of the Advisory Committee on Dangerous Pathogens Transmissible Spongiform Encephalopathy
-------------------- BSE-L@LISTS.AEGEE.ORG --------------------
snip...
. More specific examples of unanswered questions with health implications are:
. Will the eventual elimination of classical scrapie in the EU leave an ecological niche for other TSEs such as BSE or atypical scrapie?
. Is CWD transmissible to humans?
. Can a reliable ante mortem diagnostic blood test for vCJD be developed?
. What is the true prevalence of v CJD infection (as opposed to overt disease) in the UK?
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
--------------------------------------------------------------------------------
. Are some commoner types of neurodegenerative disease (including Alzheimer's disease and Parkinson's disease) also transmissible? Some recent scientific research has suggested this possibility
--------------------------------------------------------------------------------
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
. Could cases of protease sensitive prionopathy (PSP) be missed by conventional tests which, in all other TSEs, rely on the resistance of the prion protein in the nervous system that accompanies disease to digestion by protease enzymes?
. Can we develop reliable methods for removing and detecting protein on re-usable surgical instruments?
SNIP...
FULL TEXT ;
Monday, October 12, 2009
SEAC Science and Technology Committee's investigation of research funding priorities on behalf of the Advisory Committee on Dangerous Pathogens TSE 8 October 2009
http://bse-atypical.blogspot.com/2009/10/seac-science-and-technology-committees.html
----- Original Message -----
From: "Terry S. Singeltary Sr."
To:
Sent: Monday, June 29, 2009 2:08 PM
Subject: [BSE-L] Beyond the prion principle
-------------------- BSE-L@LISTS.AEGEE.ORG --------------------
News and Views Nature 459, 924-925 (18 June 2009) doi:10.1038/459924a; Published online 17 June 2009
CELL BIOLOGY
Beyond the prion principle
Adriano Aguzzi
It seems that many misfolded proteins can act like prions - spreading disease by imparting their misshapen structure to normal cellular counterparts. But how common are bona fide prions really?
The protein-only hypothesis of prion propagation is steadily gaining ground. First envisaged by John Stanley Griffith1 and later formalized by Stanley Prusiner2, this theory proposes the existence of an infectious agent composed solely of protein. Three reports, two in Nature Cell Biology3,4 and one in The Journal of Cell Biology5, now contend that, far from being confined to the rare prion diseases, prion-like transmission of altered proteins may occur in several human diseases of the brain and other organs.
Prions are now accepted as causing the transmissible spongiform encephalopathies, which include scrapie in sheep, bovine spongiform encephalopathy (BSE, or mad cow disease) and its human variant Creutzfeldt-Jakob disease. The infectious prion particle is made up of PrPSc, a misfolded and aggregated version of a normal protein known as PrPC. Like the growth of crystals, PrPSc propagates by recruiting monomeric PrPC into its aggregates - a process that has been replicated in vitro6 and in transgenic mice7. The breakage of PrPSc aggregates represents the actual replicative event, as it multiplies the number of active seeds8.
Apart from prion diseases, the misfolding and aggregation of proteins into various harmful forms, which are collectively known as amyloid, causes a range of diseases of the nervous system and other organs. The clinical characteristics of amyloidoses, however, gave little reason to suspect a relationship to prion diseases. Hints of prion-like behaviour in amyloid have emerged from studies of Alzheimer's disease and Parkinson's disease. Alzheimer's disease had been suspected to be transmissible for some time: an early report9 of disease transmission to hamsters through white blood cells from people with Alzheimer's disease caused great consternation, but was never reproduced. Much more tantalizing evidence came from the discovery10,11 that aggregates of the amyloid-â (Aâ) peptide found in the brain of people with Alzheimer's disease could be transmitted to the brain of mice engineered to produce large amounts of the Aâ precursor protein APP. Another study12 has shown that healthy tissue grafted into the brain of people with Parkinson's disease acquires intracellular Lewy bodies - aggregates of the Parkinson's disease-associated protein á-synuclein. This suggests prion-like transmission of diseased protein from the recipient's brain to the grafted cells.
These findings10-12 raise a provocative question. If protein aggregation depends on the introduction of 'seeds' and on the availability of the monomeric precursor, and if, as has been suggested13, amyloid represents the primordial state of all proteins, wouldn't all proteins - under appropriate conditions - behave like prions in the presence of sufficient precursor? Acceptance of this concept is gaining momentum. For one thing, an increasing wealth of traits is being found in yeast, fungi and bacteria that can best be explained as prion-like phenomena (see table). And now, Ren and colleagues3 provide evidence for prion-like spread of polyglutamine (polyQ)- containing protein aggregates, which are similar to the aggregates found in Huntington's disease. They show that polyQ aggregates can be taken up from the outside by mammalian cells. Once in the cytosol, the polyQ aggregates can grow by recruiting endogenous polyQ. Clavaguera et al.4 report similar findings in a mouse model of tauopathy, a neurodegenerative disease caused by intraneuronal aggregation of the microtubule-associated tau protein. Injection of mutant human tau into the brain of mice overexpressing normal human tau transmitted tauopathy, with intracellular aggregation of previously normal tau and spread of aggregates to neighbouring regions of the brain. Notably, full-blown tauopathy was not induced in mice that did not express human tau. Assuming that tau pathology wasn't elicited by some indirect pathway (some mice overexpressing mutated human tau develop protein tangles even when exposed to un related amyloid aggregates14), this sequence of events is reminiscent of prions. Finally, Frost and colleagues5 show that extracellular tau aggregates can be taken up by cells in culture. Hence, tau can attack and penetrate cells from the outside, sporting predatory behaviour akin to that of prions.
Yet there is one crucial difference between actual prion diseases and diseases caused by other prion-like proteins (let's call them prionoids) described so far (see table). The behaviour of prions is entirely comparable to that of any other infectious agent: for instance, prions are transmissible between individuals and often across species, and can be assayed with classic microbiological techniques, including titration by bioassay. Accordingly, prion diseases were long thought to be caused by viruses, and BSE created a worldwide panic similar to that currently being provoked by influenza. By contrast, although prionoids can 'infect' neighbouring molecules and sometimes even neighbouring cells, they do not spread within communities or cause epidemics such as those seen with BSE.
So, should any amyloid deserve an upgrade to a bone fide prion status? Currently, amyloid A (AA) amyloidosis may be the most promising candidate for a truly infectious disease caused by a self-propagating protein other than PrPSc. AA amyloid consists of orderly aggregated fragments of the SAA protein, and its deposition damages many organs of the body. Seeds of AA amyloid can be excreted in faeces15, and can induce amyloidosis if taken up orally (at least in geese)16. Also, AA amyloid may be transmitted between mice by transfusion of white blood cells17. So, like entero viruses and, perhaps, sheep scrapie prions, AA amyloid seems to display all the elements of a complete infectious life cycle, including uptake, replication and release from its host.
There are intriguing evolutionary implications to the above findings. If prionoids are ubiquitous, why didn't evolution erect barriers to their pervasiveness? Maybe it is because the molecular transmissibility of aggregated states can sometimes be useful. Indeed, aggregation of the Sup35 protein, which leads to a prion-like phenomenon in yeast, may promote evolutionary adaptation by allowing yeast cells to temporarily activate DNA sequences that are normally untranslated18. Mammals have developed receptors for aggregates, and ironically PrPC may be one of them19, although these receptors have not been reported to mediate protective functions. Therefore, we shouldn't be shocked if instances of beneficial prionoids emerge in mammals as well. ¦
Adriano Aguzzi is at the Institute of Neuropathology, University Hospital of Zurich, CH-8091 Zurich, Switzerland. e-mail: adriano.aguzzi@usz.ch
1. Griffith, J. S. Nature 215, 1043-1044 (1967). 2. Prusiner, S. B. Science 216, 136-144 (1982). 3. Ren, P.-H. et al. Nature Cell Biol. 11, 219-225 (2009). 4. Clavaguera, F. et al. Nature Cell Biol. doi:10.1038/ncb1901 (2009). 5. Frost, B., Jacks, R. L. & Diamond, M. I. J. Biol. Chem. 284, 12845-12852 (2009). 6. Castilla, J., Saá, P., Hetz, C. & Soto, C. Cell 121, 195-206 (2005). 7. Sigurdson, C. J. et al. Proc. Natl Acad. Sci. USA 106, 304-309 (2009). 8. Aguzzi, A. & Polymenidou, M. Cell 116, 313-327 (2004). 9. Manuelidis, E. E. et al. Proc. Natl Acad. Sci. USA 85, 4898-4901 (1988). 10. Kane, M. D. et al. J. Neurosci. 20, 3606-3611 (2000). 11. Meyer-Luehmann, M. et al. Science 313, 1781-1784 (2006). 12. Li, J.-Y. et al. Nature Med. 14, 501-503 (2008). 13. Chiti, F. & Dobson, C. M. Annu. Rev. Biochem. 75, 333-366 (2006). 14. GÖtz, J., Chen, F., van Dorpe, J. & Nitsch, R. M. Science 293, 1491-1495 (2001). 15. Zhang, B. et al. Proc. Natl Acad. Sci. USA 105, 7263-7268 (2008). 16. Solomon, A. et al. Proc. Natl Acad. Sci. USA 104, 10998-11001 (2007). 17. Sponarova, J., NystrÖm, S. N. & Westermark, G. T. PLoS ONE 3, e3308 (2008). 18. True, H. L. & Lindquist, S. L. Nature 407, 477-483 (2000). 19. Laurén, J. et al. Nature 457, 1128-1132 (2009).
PRIONS AND POTENTIAL PRIONOIDS
Disease Protein Molecular transmissibility Infectious life cycle Prion diseases PrPSc Yes Yes Alzheimer's disease Amyloid-ß Yes Not shown Tauopathies Tau Yes Not shown Parkinson's disease a-Synuclein Host-to-graft Not shown AA amyloidosis Amyloid A Yes Possible Huntington's disease Polyglutamine Yes Not shown Phenotype Protein Molecular transmissibility Infectious life cycle Suppressed translational termination (yeast) Sup35 Yes Not shown Heterokaryon incompatibility (filamentous fungi) Het-s Yes Not shown Biofilm promotion (bacteria) CsgA Yes Not shown In humans and animals, infectious prion diseases are caused by PrPSc, which spreads by recruiting its monomeric precursor PrPC into aggregates. Aggregates then multiply by breakage, a process that is termed molecular transmissibility. Other proteins involved in disease and in phenotypes of fungi and bacteria, can also undergo self-sustaining aggregation, but none of these 'prionoid' proteins behaves like typical infectious agents, nor do any of them enact a complete infectious life cycle - with the possible exception of AA amyloid. Correction In the News & Views article "Immunology: Immunity's ancient arms" by Gary W. Litman and John P. Cannon (Nature 459, 784-786; 2009), the name of the fi rst author of the Nature paper under discussion was misspelt. The author's name is P. Guo, not Gou as published.
© 2009 Macmillan Publishers Limited. All rights reserved
http://www.nature.com/nature/journal/v459/n7249/full/459924a.html
Thursday, February 26, 2009
'Harmless' prion protein linked to Alzheimer's disease Non-infectious form of prion protein could cause brain degeneration ???
http://betaamyloidcjd.blogspot.com/2009/02/harmless-prion-protein-linked-to.html
IN STRICT CONFIDENCE
TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
http://www.bseinquiry.gov.uk/files/yb/1993/01/05004001.pdf
CJD1/9 0185
Ref: 1M51A
IN STRICT CONFIDENCE
TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
1. CMO will wish to be aware that a meeting was held at DH yesterday, 4 January, to discuss the above findings. It was chaired by Professor Murray (Chairman of the MRC Co-ordinating Committee on Research in the Spongiform Encephalopathies in Man), and attended by relevant experts in the fields of Neurology, Neuropathology, molecular biology, amyloid biochemistry, and the spongiform encephalopathies, and by representatives of the MRC and AFRC.
2. Briefly, the meeting agreed that:
i) Dr Ridley et als findings of experimental induction of p amyloid in primates were valid, interesting and a significant advance in the understanding of neurodegeneradve disorders;
ii) there were no immediate implications for the public health, and no further safeguards were thought to be necessary at present; and
iii) additional research was desirable, both epidemiological and at the molecular level. Possible avenues are being followed up by DH and the MRC, but the details will require further discussion.
93/01.05/4.1tss
http://www.bseinquiry.gov.uk/files/yb/1993/01/05004001.pdf
Regarding Alzheimer's disease
(note the substantial increase on a yearly basis)
http://www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
snip...
The pathogenesis of these diseases was compared to Alzheimer's disease at a molecular level...
snip...
http://www.bseinquiry.gov.uk/files/yb/1990/03/12003001.pdf
And NONE of this is relevant to BSE?
There is also the matter whether the spectrum of ''prion disease'' is wider than that recognized at present.
http://www.bseinquiry.gov.uk/files/yb/1990/07/06005001.pdf
THE LINE TO TAKE.
http://www.bseinquiry.gov.uk/files/yb/1990/07/09001001.pdf
BSE101/1 0136
IN CONFIDENCE
5 NOV 1992
CMO From: Dr J S Metters DCMO 4 November 1992
TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES
http://www.bseinquiry.gov.uk/files/yb/1992/11/04001001.pdf
also, see the increase of Alzheimer's from 1981 to 1986
http://www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
Occasional PrP plaques are seen in cases of Alzheimer's Disease
snip...
full text;
http://www.bseinquiry.gov.uk/files/ws/s310.pdf
Tuesday, August 26, 2008
Alzheimer's Transmission of AA-amyloidosis: Similarities with Prion Disorders NEUROPRION 2007 FC4.3
http://betaamyloidcjd.blogspot.com/2008/08/alzheimers-transmission-of-aa.html
see full text ;
http://betaamyloidcjd.blogspot.com/2009/02/harmless-prion-protein-linked-to.html
Alzheimer's and CJD
http://betaamyloidcjd.blogspot.com/
MAD COW DISEASE, AND U.S. BEEF TRADE
MAD COW DISEASE, CJD, TSE, SOUND SCIENCE, COMMERCE, AND SELLING YOUR SOUL TO THE DEVIL
http://usdameatexport.blogspot.com/2009/10/mad-cow-disease-and-us-beef-trade.html
Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA
Labels:
Alzheimer's,
BSE,
CJD,
CWD,
FSE,
Pathological Prion Protein,
SCRAPIE,
TME,
USA
Monday, September 7, 2009
Scientists uncover new hereditary links to Alzheimer’s disease
Scientists uncover new hereditary links to Alzheimer’s disease
7 September 2009
Two genes which increase a person’s likelihood of developing the most common form of Alzheimer’s disease have been discovered in the largest-ever study of its kind into the illness. This international study, which received major funding from the Medical Research Council (MRC), is a significant step forward in understanding how Alzheimer’s develops and opens up new areas for further research into potential treatment and genetic screening.
Results from the research, which involved analysing the DNA from over 16,000 people over two years, show the genes CLU and PICALM can play a direct role in the risk of developing Alzheimer’s disease. Until now only one gene, APOE4, had been clearly identified as a potential risk factor. The Genome-Wide Association Study (GWAS) has emerged from the MRC new flagship research centre in Cardiff which is dedicated to genetic research into the disorders of the brain.
Lead author of the study, Professor Julie Williams, said:
“This research is changing our understanding of what might cause the common form of Alzheimer’s disease and could provide valuable new leads in the race to find treatments. If we can combat the detrimental effects of these two genes, we estimate it could reduce the chances of people developing Alzheimer's by almost 20%.”
Sir Leszek Borysiewicz, Chief Executive of the Medical Research Council, said: “Funding work on neurodegenerative diseases is priority for us and MRC investment in this kind of innovative research is crucial in piecing together the Alzheimer’s puzzle. This study is a huge step towards achieving an earlier diagnosis of Alzheimer’s and improving the lives of the many people affected by the disease."
Dr Marie Janson, Director of Development at the Alzheimer’s Research Trust, said:
“These unprecedented findings are the result of collaborations led by funders and scientists alike. Charities including the Alzheimer’s Research Trust and Wellcome Trust enhanced the MRC’s immense contribution to this work, while scientists throughout the UK and around the world shared data, ideas and more to make the study possible. This opens up multiple avenues that could lead to the development of new treatments for this devastating disease.”
The Medical Research Council invested £1.74 million in the programme of research, alongside major funding from the Wellcome Trust, the Welsh Assembly Government and the Alzheimer’s Research Trust, among others.
2
Data from the GWAS research was shared with a further French-led study, which has revealed compelling evidence for a third gene associated with Alzheimer’s called CR1.
Notes:
1. The Medical Research Council is dedicated to improving human health through excellent science. It invests on behalf of the UK taxpayer. Its work ranges from molecular level science to public health research, carried out in universities, hospitals and a network of its own units and institutes. The results have led to some of the most significant discoveries in medical science and benefited the health and wealth of millions of people in the UK and around the world. www.mrc.ac.uk
2. The Genome-Wide Association Study (GWAS) identifies variants at CLU and PICALM associated with Alzheimer’s disease’ by Williams et al is published in Nature Genetics.
3. Both CLU and PICALM highlight new pathways that lead to Alzheimer's disease. The CLU gene produces clusterin which normally acts to protect the brain in a variety of ways. Variation in this gene could remove this protection and contribute to Alzheimer's development. PICALM is important at synapses - connections between brain cells - and is involved in the transport of molecules into and inside of nerve cells, helping form memories and other brain functions. We know that the health of synapses is closely related to memory performance in Alzheimer's disease, thus changes in genes which affect synapses are likely to have a direct effect on disease development.
4. Professor Julie Williams is Professor of Neuropsychology Genetics at the Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics based at the University of Cardiff. For more information about the new flagship centre in Cardiff visit:
http://www.mrc.ac.uk/Newspublications/News/MRC006193
5. Alzheimer's disease is the most common cause of dementia, affecting around 417,000 people in the UK. Alzheimer's disease, first described by the German neurologist Alois Alzheimer, is a physical disease affecting the brain. During the course of the disease, 'plaques' and 'tangles' develop in the structure of the brain, leading to the death of brain cells. People with Alzheimer's also have a shortage of some important chemicals in their brains. These chemicals are involved with the transmission of messages within the brain
6. Following the establishment of a collaborative consortium between Europe and the United States, the investigation involved researchers from universities in Cardiff, London, Cambridge, Nottingham, Southampton, Manchester, Oxford, Bristol and Belfast, as well as Irish, German, Belgian, Greek and American institutions.
Press contact: 020 7637 6011
press.office@headoffice.mrc.ac.uk
http://www.mrc.ac.uk/consumption/groups/public/documents/content/mrc006341.pdf
SEE ALZHEIMER'S AND CJD
http://betaamyloidcjd.blogspot.com/
TSS
7 September 2009
Two genes which increase a person’s likelihood of developing the most common form of Alzheimer’s disease have been discovered in the largest-ever study of its kind into the illness. This international study, which received major funding from the Medical Research Council (MRC), is a significant step forward in understanding how Alzheimer’s develops and opens up new areas for further research into potential treatment and genetic screening.
Results from the research, which involved analysing the DNA from over 16,000 people over two years, show the genes CLU and PICALM can play a direct role in the risk of developing Alzheimer’s disease. Until now only one gene, APOE4, had been clearly identified as a potential risk factor. The Genome-Wide Association Study (GWAS) has emerged from the MRC new flagship research centre in Cardiff which is dedicated to genetic research into the disorders of the brain.
Lead author of the study, Professor Julie Williams, said:
“This research is changing our understanding of what might cause the common form of Alzheimer’s disease and could provide valuable new leads in the race to find treatments. If we can combat the detrimental effects of these two genes, we estimate it could reduce the chances of people developing Alzheimer's by almost 20%.”
Sir Leszek Borysiewicz, Chief Executive of the Medical Research Council, said: “Funding work on neurodegenerative diseases is priority for us and MRC investment in this kind of innovative research is crucial in piecing together the Alzheimer’s puzzle. This study is a huge step towards achieving an earlier diagnosis of Alzheimer’s and improving the lives of the many people affected by the disease."
Dr Marie Janson, Director of Development at the Alzheimer’s Research Trust, said:
“These unprecedented findings are the result of collaborations led by funders and scientists alike. Charities including the Alzheimer’s Research Trust and Wellcome Trust enhanced the MRC’s immense contribution to this work, while scientists throughout the UK and around the world shared data, ideas and more to make the study possible. This opens up multiple avenues that could lead to the development of new treatments for this devastating disease.”
The Medical Research Council invested £1.74 million in the programme of research, alongside major funding from the Wellcome Trust, the Welsh Assembly Government and the Alzheimer’s Research Trust, among others.
2
Data from the GWAS research was shared with a further French-led study, which has revealed compelling evidence for a third gene associated with Alzheimer’s called CR1.
Notes:
1. The Medical Research Council is dedicated to improving human health through excellent science. It invests on behalf of the UK taxpayer. Its work ranges from molecular level science to public health research, carried out in universities, hospitals and a network of its own units and institutes. The results have led to some of the most significant discoveries in medical science and benefited the health and wealth of millions of people in the UK and around the world. www.mrc.ac.uk
2. The Genome-Wide Association Study (GWAS) identifies variants at CLU and PICALM associated with Alzheimer’s disease’ by Williams et al is published in Nature Genetics.
3. Both CLU and PICALM highlight new pathways that lead to Alzheimer's disease. The CLU gene produces clusterin which normally acts to protect the brain in a variety of ways. Variation in this gene could remove this protection and contribute to Alzheimer's development. PICALM is important at synapses - connections between brain cells - and is involved in the transport of molecules into and inside of nerve cells, helping form memories and other brain functions. We know that the health of synapses is closely related to memory performance in Alzheimer's disease, thus changes in genes which affect synapses are likely to have a direct effect on disease development.
4. Professor Julie Williams is Professor of Neuropsychology Genetics at the Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics based at the University of Cardiff. For more information about the new flagship centre in Cardiff visit:
http://www.mrc.ac.uk/Newspublications/News/MRC006193
5. Alzheimer's disease is the most common cause of dementia, affecting around 417,000 people in the UK. Alzheimer's disease, first described by the German neurologist Alois Alzheimer, is a physical disease affecting the brain. During the course of the disease, 'plaques' and 'tangles' develop in the structure of the brain, leading to the death of brain cells. People with Alzheimer's also have a shortage of some important chemicals in their brains. These chemicals are involved with the transmission of messages within the brain
6. Following the establishment of a collaborative consortium between Europe and the United States, the investigation involved researchers from universities in Cardiff, London, Cambridge, Nottingham, Southampton, Manchester, Oxford, Bristol and Belfast, as well as Irish, German, Belgian, Greek and American institutions.
Press contact: 020 7637 6011
press.office@headoffice.mrc.ac.uk
http://www.mrc.ac.uk/consumption/groups/public/documents/content/mrc006341.pdf
SEE ALZHEIMER'S AND CJD
http://betaamyloidcjd.blogspot.com/
TSS
Labels:
Alzheimer's,
APOE4,
CLU,
genes,
increased risk,
PICALM
Monday, June 29, 2009
Beyond the prion principle
News and Views Nature 459, 924-925 (18 June 2009) doi:10.1038/459924a; Published online 17 June 2009
CELL BIOLOGY
Beyond the prion principle
Adriano Aguzzi
It seems that many misfolded proteins can act like prions — spreading disease by imparting their misshapen structure to normal cellular counterparts. But how common are bona fide prions really?
The protein-only hypothesis of prion propagation is steadily gaining ground. First envisaged by John Stanley Griffith1 and later formalized by Stanley Prusiner2, this theory proposes the existence of an infectious agent composed solely of protein. Three reports, two in Nature Cell Biology3,4 and one in The Journal of Cell Biology5, now contend that, far from being confined to the rare prion diseases, prion-like transmission of altered proteins may occur in several human diseases of the brain and other organs.
Prions are now accepted as causing the transmissible spongiform encephalopathies, which include scrapie in sheep, bovine spongiform encephalopathy (BSE, or mad cow disease) and its human variant Creutzfeldt–Jakob disease. The infectious prion particle is made up of PrPSc, a misfolded and aggregated version of a normal protein known as PrPC. Like the growth of crystals, PrPSc propagates by recruiting monomeric PrPC into its aggregates — a process that has been replicated in vitro6 and in transgenic mice7. The breakage of PrPSc aggregates represents the actual replicative event, as it multiplies the number of active seeds8.
Apart from prion diseases, the misfolding and aggregation of proteins into various harmful forms, which are collectively known as amyloid, causes a range of diseases of the nervous system and other organs. The clinical characteristics of amyloidoses, however, gave little reason to suspect a relationship to prion diseases. Hints of prion-like behaviour in amyloid have emerged from studies of Alzheimer’s disease and Parkinson’s disease. Alzheimer’s disease had been suspected to be transmissible for some time: an early report9 of disease transmission to hamsters through white blood cells from people with Alzheimer’s disease caused great consternation, but was never reproduced. Much more tantalizing evidence came from the discovery10,11 that aggregates of the amyloid-â (Aâ) peptide found in the brain of people with Alzheimer’s disease could be transmitted to the brain of mice engineered to produce large amounts of the Aâ precursor protein APP. Another study12 has shown that healthy tissue grafted into the brain of people with Parkinson’s disease acquires intracellular Lewy bodies — aggregates of the Parkinson’s disease-associated protein á-synuclein. This suggests prion-like transmission of diseased protein from the recipient’s brain to the grafted cells.
These findings10–12 raise a provocative question. If protein aggregation depends on the introduction of ‘seeds’ and on the availability of the monomeric precursor, and if, as has been suggested13, amyloid represents the primordial state of all proteins, wouldn’t all proteins — under appropriate conditions — behave like prions in the presence of sufficient precursor? Acceptance of this concept is gaining momentum. For one thing, an increasing wealth of traits is being found in yeast, fungi and bacteria that can best be explained as prion-like phenomena (see table). And now, Ren and colleagues3 provide evidence for prion-like spread of polyglutamine (polyQ)- containing protein aggregates, which are similar to the aggregates found in Huntington’s disease. They show that polyQ aggregates can be taken up from the outside by mammalian cells. Once in the cytosol, the polyQ aggregates can grow by recruiting endogenous polyQ. Clavaguera et al.4 report similar findings in a mouse model of tauopathy, a neurodegenerative disease caused by intraneuronal aggregation of the microtubule-associated tau protein. Injection of mutant human tau into the brain of mice overexpressing normal human tau transmitted tauopathy, with intracellular aggregation of previously normal tau and spread of aggregates to neighbouring regions of the brain. Notably, full-blown tauopathy was not induced in mice that did not express human tau. Assuming that tau pathology wasn’t elicited by some indirect pathway (some mice overexpressing mutated human tau develop protein tangles even when exposed to un related amyloid aggregates14), this sequence of events is reminiscent of prions. Finally, Frost and colleagues5 show that extracellular tau aggregates can be taken up by cells in culture. Hence, tau can attack and penetrate cells from the outside, sporting predatory behaviour akin to that of prions.
Yet there is one crucial difference between actual prion diseases and diseases caused by other prion-like proteins (let’s call them prionoids) described so far (see table). The behaviour of prions is entirely comparable to that of any other infectious agent: for instance, prions are transmissible between individuals and often across species, and can be assayed with classic microbiological techniques, including titration by bioassay. Accordingly, prion diseases were long thought to be caused by viruses, and BSE created a worldwide panic similar to that currently being provoked by influenza. By contrast, although prionoids can ‘infect’ neighbouring molecules and sometimes even neighbouring cells, they do not spread within communities or cause epidemics such as those seen with BSE.
So, should any amyloid deserve an upgrade to a bone fide prion status? Currently, amyloid A (AA) amyloidosis may be the most promising candidate for a truly infectious disease caused by a self-propagating protein other than PrPSc. AA amyloid consists of orderly aggregated fragments of the SAA protein, and its deposition damages many organs of the body. Seeds of AA amyloid can be excreted in faeces15, and can induce amyloidosis if taken up orally (at least in geese)16. Also, AA amyloid may be transmitted between mice by transfusion of white blood cells17. So, like entero viruses and, perhaps, sheep scrapie prions, AA amyloid seems to display all the elements of a complete infectious life cycle, including uptake, replication and release from its host.
There are intriguing evolutionary implications to the above findings. If prionoids are ubiquitous, why didn’t evolution erect barriers to their pervasiveness? Maybe it is because the molecular transmissibility of aggregated states can sometimes be useful. Indeed, aggregation of the Sup35 protein, which leads to a prion-like phenomenon in yeast, may promote evolutionary adaptation by allowing yeast cells to temporarily activate DNA sequences that are normally untranslated18. Mammals have developed receptors for aggregates, and ironically PrPC may be one of them19, although these receptors have not been reported to mediate protective functions. Therefore, we shouldn’t be shocked if instances of beneficial prionoids emerge in mammals as well. ¦
Adriano Aguzzi is at the Institute of Neuropathology, University Hospital of Zurich, CH-8091 Zurich, Switzerland. e-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000029/!x-usc:mailto:adriano.aguzzi@usz.ch
1. Griffith, J. S. Nature 215, 1043–1044 (1967). 2. Prusiner, S. B. Science 216, 136–144 (1982). 3. Ren, P.-H. et al. Nature Cell Biol. 11, 219–225 (2009). 4. Clavaguera, F. et al. Nature Cell Biol. doi:10.1038/ncb1901 (2009). 5. Frost, B., Jacks, R. L. & Diamond, M. I. J. Biol. Chem. 284, 12845–12852 (2009). 6. Castilla, J., Saá, P., Hetz, C. & Soto, C. Cell 121, 195–206 (2005). 7. Sigurdson, C. J. et al. Proc. Natl Acad. Sci. USA 106, 304–309 (2009). 8. Aguzzi, A. & Polymenidou, M. Cell 116, 313–327 (2004). 9. Manuelidis, E. E. et al. Proc. Natl Acad. Sci. USA 85, 4898–4901 (1988). 10. Kane, M. D. et al. J. Neurosci. 20, 3606–3611 (2000). 11. Meyer-Luehmann, M. et al. Science 313, 1781–1784 (2006). 12. Li, J.-Y. et al. Nature Med. 14, 501–503 (2008). 13. Chiti, F. & Dobson, C. M. Annu. Rev. Biochem. 75, 333–366 (2006). 14. GÖtz, J., Chen, F., van Dorpe, J. & Nitsch, R. M. Science 293, 1491–1495 (2001). 15. Zhang, B. et al. Proc. Natl Acad. Sci. USA 105, 7263–7268 (2008). 16. Solomon, A. et al. Proc. Natl Acad. Sci. USA 104, 10998–11001 (2007). 17. Sponarova, J., NystrÖm, S. N. & Westermark, G. T. PLoS ONE 3, e3308 (2008). 18. True, H. L. & Lindquist, S. L. Nature 407, 477–483 (2000). 19. Laurén, J. et al. Nature 457, 1128–1132 (2009). PRIONS AND POTENTIAL PRIONOIDS Disease Protein Molecular transmissibility Infectious life cycle Prion diseases PrPSc Yes Yes Alzheimer’s disease Amyloid-ß Yes Not shown Tauopathies Tau Yes Not shown Parkinson’s disease a-Synuclein Host-to-graft Not shown AA amyloidosis Amyloid A Yes Possible Huntington’s disease Polyglutamine Yes Not shown Phenotype Protein Molecular transmissibility Infectious life cycle Suppressed translational termination (yeast) Sup35 Yes Not shown Heterokaryon incompatibility (filamentous fungi) Het-s Yes Not shown Biofilm promotion (bacteria) CsgA Yes Not shown In humans and animals, infectious prion diseases are caused by PrPSc, which spreads by recruiting its monomeric precursor PrPC into aggregates. Aggregates then multiply by breakage, a process that is termed molecular transmissibility. Other proteins involved in disease and in phenotypes of fungi and bacteria, can also undergo self-sustaining aggregation, but none of these ‘prionoid’ proteins behaves like typical infectious agents, nor do any of them enact a complete infectious life cycle — with the possible exception of AA amyloid. Correction In the News & Views article “Immunology: Immunity’s ancient arms” by Gary W. Litman and John P. Cannon (Nature 459, 784–786; 2009), the name of the fi rst author of the Nature paper under discussion was misspelt. The author’s name is P. Guo, not Gou as published.
© 2009 Macmillan Publishers Limited. All rights reserved
http://www.nature.com/nature/journal/v459/n7249/full/459924a.html
Thursday, February 26, 2009
'Harmless' prion protein linked to Alzheimer's disease Non-infectious form of prion protein could cause brain degeneration ???
http://betaamyloidcjd.blogspot.com/2009/02/harmless-prion-protein-linked-to.html
IN STRICT CONFIDENCE
TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
http://www.bseinquiry.gov.uk/files/yb/1993/01/05004001.pdf
CJD1/9 0185
Ref: 1M51A
IN STRICT CONFIDENCE
TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
1. CMO will wish to be aware that a meeting was held at DH yesterday, 4 January, to discuss the above findings. It was chaired by Professor Murray (Chairman of the MRC Co-ordinating Committee on Research in the Spongiform Encephalopathies in Man), and attended by relevant experts in the fields of Neurology, Neuropathology, molecular biology, amyloid biochemistry, and the spongiform encephalopathies, and by representatives of the MRC and AFRC.
2. Briefly, the meeting agreed that:
i) Dr Ridley et als findings of experimental induction of p amyloid in primates were valid, interesting and a significant advance in the understanding of neurodegeneradve disorders;
ii) there were no immediate implications for the public health, and no further safeguards were thought to be necessary at present; and
iii) additional research was desirable, both epidemiological and at the molecular level. Possible avenues are being followed up by DH and the MRC, but the details will require further discussion.
93/01.05/4.1tss
http://www.bseinquiry.gov.uk/files/yb/1993/01/05004001.pdf
Regarding Alzheimer's disease
(note the substantial increase on a yearly basis)
http://www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
snip...
The pathogenesis of these diseases was compared to Alzheimer's disease at a molecular level...
snip...
http://www.bseinquiry.gov.uk/files/yb/1990/03/12003001.pdf
And NONE of this is relevant to BSE?
There is also the matter whether the spectrum of ''prion disease'' is wider than that recognized at present.
http://www.bseinquiry.gov.uk/files/yb/1990/07/06005001.pdf
THE LINE TO TAKE.
http://www.bseinquiry.gov.uk/files/yb/1990/07/09001001.pdf
BSE101/1 0136
IN CONFIDENCE
5 NOV 1992
CMO From: Dr J S Metters DCMO 4 November 1992
TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES
http://www.bseinquiry.gov.uk/files/yb/1992/11/04001001.pdf
also, see the increase of Alzheimer's from 1981 to 1986
http://www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
Tuesday, August 26, 2008
Alzheimer's Transmission of AA-amyloidosis: Similarities with Prion Disorders NEUROPRION 2007 FC4.3
http://betaamyloidcjd.blogspot.com/2008/08/alzheimers-transmission-of-aa.html
see full text ;
http://betaamyloidcjd.blogspot.com/2009/02/harmless-prion-protein-linked-to.html
Alzheimer's and CJD
http://betaamyloidcjd.blogspot.com/
Saturday, March 22, 2008
10 Million Baby Boomers to have Alzheimer's in the coming decades 2008 Alzheimer's disease facts and figures
http://betaamyloidcjd.blogspot.com/2008/03/association-between-deposition-of-beta.html
re-Association between Deposition of Beta-Amyloid and Pathological Prion Protein in Sporadic Creutzfeldt-Jakob Disease
http://betaamyloidcjd.blogspot.com/2008/04/re-association-between-deposition-of.html
Elsevier Editorial System(tm) for The Lancet Infectious Diseases Manuscript Draft Manuscript Number:
Title: HUMAN and ANIMAL TSE Classifications i.e. mad cow disease and the UKBSEnvCJD only theory
Article Type: Personal View Corresponding
snip...see full text 31 pages ;
http://www.regulations.gov/fdmspublic/ContentViewer?objectId=090000648027c28e&disposition=attachment&contentType=pdf
Tuesday, August 26, 2008
Alzheimer's Transmission of AA-amyloidosis: Similarities with Prion Disorders NEUROPRION 2007 FC4.3
http://betaamyloidcjd.blogspot.com/2008/08/alzheimers-transmission-of-aa.html
Sunday, June 7, 2009
ALZHEIMER'S DISEASE IS TRANSMISSIBLE
http://betaamyloidcjd.blogspot.com/2009/06/alzheimers-disease-is-transmissible.html
Diagnosis and Reporting of Creutzfeldt-Jakob Disease Singeltary, Sr et al. JAMA.2001; 285: 733-734.
Full Text
Tue, 13 Feb 2001 JAMA Vol. 285 No. 6, February 14, 2001 Letters
Diagnosis and Reporting of Creutzfeldt-Jakob Disease
To the Editor:
In their Research Letter in JAMA. 2000;284:2322-2323, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.
Terry S. Singeltary, Sr Bacliff, Tex
To the Editor:
At the time of my mother's death, various diagnoses were advanced such as "rapid progressive Alzheimer disease," psychosis, and dementia. Had I not persisted and personally sought and arranged a brain autopsy, her death certificate would have read cardiac failure and not CJD.
Through CJD Voice1 I have corresponded with hundreds of grief-stricken families who are so devastated by this horrific disease that brain autopsy is the furthest thing from their minds. In my experience, very few physicians suggest it to the family. After the death and when families reflect that they never were sure what killed their loved one it is too late to find the true cause of death. In the years since my mother died I think that the increasing awareness of the nature of CJD has only resulted in fewer pathologists being willing to perform an autopsy in a suspected case of CJD.
People with CJD may die with incorrect diagnoses of dementia, psychosis, Alzheimer disease, and myriad other neurological diseases. The true cause of death will only be known if brain autopsies are suggested to the families. Too often the physician's comment is, "Well, it could be CJD but that is so rare it isn't likely."
Until CJD is required to be reported to state health departments, as other diseases are, there will be no accurate count of CJD deaths in the United States and thus no way to know if the number of deaths is decreasing, stable, or increasing as it has recently in the United Kingdom.
Dorothy E. Kraemer Stillwater, Okla
In Reply:
Mr Singeltary and Ms Kraemer express an underlying concern that our recently reported mortality surveillance estimate of about 1 CJD case per million population per year in the United States since 1985 may greatly underestimate the true incidence of this disease. Based on evidence from epidemiologic investigations both within and outside the United States, we believe that these national estimates are reasonably accurate.
Even during the 1990s in the United Kingdom, where much attention and public health resources have been devoted to prion disease surveillance, the reported incidence of classic CJD is similar to that reported in the United States.
In addition, in 1996, active US surveillance for CJD and new variant (nv) CJD in 5 sites detected no evidence of the occurrence of nvCJD and showed that 86% of the CJD cases in these sites were identifiable through routinely collected mortality data.
Our report provides additional evidence against the occurrence of nvCJD in the United States based on national mortality data analyses and enhanced surveillance. It specifically mentions a new center for improved pathology surveillance. We hope that the described enhancements along with the observations of Singeltary and Kraemer will encourage medical care providers to suggest brain autopsies for more suspected CJD cases to facilitate the identification of potentially misdiagnosed CJD cases and to help monitor the possible occurrence of nvCJD.
Creutzfeldt-Jakob disease is not on the list of nationally notifiable diseases. In those states where surveillance personnel indicate that making this disease officially notifiable would meaningfully facilitate collection of data that are needed to monitor the incidence of CJD and nvCJD, including the obtaining of brain autopsy results, we encourage such a change. However, adding CJD to the notifiable diseases surveillance system may lead to potentially wasteful, duplicative reporting because the vast majority of the diagnosed cases would also be reported through the mortality surveillance system.
Furthermore, making CJD a notifiable disease may not necessarily help identify undiagnosed CJD cases. The unique characteristics of CJD make mortality data a useful surrogate for ongoing surveillance. Unlike many other neurologic diseases, CJD is invariably fatal and in most cases rapidly progressive and distinguishable clinically from other neurologic diseases.
Because CJD is least accurately diagnosed early in the course of the illness, notifiable disease surveillance of CJD could be less accurate than mortality surveillance of CJD. In addition, because death as a condition is more completely and consistently reported, mortality surveillance has the advantage of being ongoing and readily available.
The absence of CJD and nvCJD from the list of nationally notifiable diseases should not be interpreted to mean that they are not important to public health; this list does not include all such diseases. We encourage medical caregivers to report to or consult with appropriate public health authorities about any diagnosed case of a transmissible disease for which a special public health response may be needed, including nvCJD, and any patient in whom iatrogenic transmission of CJD may be suspected.
Robert V. Gibbons, MD, MPH Robert C. Holman, MS Ermias D. Belay, MD Lawrence B. Schonberger, MD, MPH Division of Viral and Rickettsial Diseases National Center for Infectious Diseases Centers for Disease Control and Prevention Atlanta, Ga
http://jama.ama-assn.org/cgi/content/full/285/6/733?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=dignosing+and+reporting+creutzfeldt+jakob+disease&searchid=1048865596978_1528&stored_search=&FIRSTINDEX=0&journalcode=jama
Full Text Diagnosis and Reporting of Creutzfeldt-Jakob Disease Singeltary, Sr et al. JAMA.2001; 285: 733-734.
http://jama.ama-assn.org/cgi/content/full/285/6/733?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=dignosing+and+reporting+creutzfeldt+jakob+disease&searchid=1048865596978_1528&stored_search=&FIRSTINDEX=0&journalcode=jama
Book
The Pathological Protein
Publisher Springer New York DOI 10.1007/b97488 Copyright 2003 ISBN 978-0-387-95508-7 (Print) 978-0-387-21755-0 (Online) DOI 10.1007/0-387-21755-X_14 Pages 223-237 Subject Collection Humanities, Social Sciences and Law SpringerLink
Laying Odds
snip...
Answering critics like Terry Singeltary, who feels that the U.S. under- counts CJD, Schonberger conceded that the current surveillance system has errors but stated that most of the errors will be confined to the older population.
snip...
http://www.springerlink.com/content/r2k2622661473336/
http://books.google.com/books?id=ePbrQNFrHtoC&pg=PA223&lpg=PA223&dq=SINGELTARY+pathological+protein+it
The statistical incidence of CJD cases in the United States has been revised to reflect that there is one case per 9000 in adults age 55 and older. Eighty-five percent of the cases are sporadic, meaning there is no known cause at present.
http://www.cjdfoundation.org/fact.html
http://cjdusa.blogspot.com/
SPORADIC CJD CASES RISING IN U.S.A 2009 UPDATE
Monday, April 20, 2009
National Prion Disease Pathology Surveillance Center Cases Examined1 (December 31, 2008)
April 20, 2009
National Prion Disease Pathology Surveillance Center Cases Examined1 (December 31, 2008)
National Prion Disease Pathology Surveillance Center Cases Examined1
(December 31, 2008)
Year Total Referrals2 Prion Disease Sporadic Familial Iatrogenic vCJD
1996 & earlier 42 32 28 4 0 0
1997 115 68 59 9 0 0
1998 93 53 45 7 1 0
1999 115 69 61 8 0 0
2000 151 103 89 14 0 0
2001 210 118 108 9 0 0
2002 258 147 123 22 2 0
2003 273 176 135 41 0 0
2004 335 184 162 21 0 13
2005 346 193 154 38 1 0
2006 380 192 159 32 0 14
2007 370 212 185 26 0 0
2008 383 228 182 23 0 0
TOTAL 30715 17756 1490 254 4 2
1 Listed based on the year of death or, if not available, on year of referral; 2 Cases with suspected prion disease for which brain tissue and/or blood (in familial cases) were submitted; 3 Disease acquired in the United Kingdom; 4 Disease acquired in Saudi Arabia; 5 Includes 20 cases in which the diagnosis is pending, and 17 inconclusive cases; 6 Includes 25 cases with type determination pending in which the diagnosis of vCJD has been excluded.
Rev 2/13/09 National
http://www.cjdsurveillance.com/pdf/case-table.pdf
http://www.cjdsurveillance.com/resources-casereport.html
http://www.aan.com/news/?event=read&article_id=4397&page=72.45.45
*5 Includes 20 cases in which the diagnosis is pending, and 17 inconclusive cases; *6 Includes 25 cases with type determination pending in which the diagnosis of vCJD has been excluded.
Greetings,
it would be interesting to know what year these atypical cases occurred, as opposed to lumping them in with the totals only.
are they accumulating ?
did they occur in one year, two years, same state, same city ?
location would be very interesting ?
age group ?
sex ?
how was it determined that nvCJD was ruled out ?
from 1997, the year i started dealing with this nightmare, there were 28 cases (per this report), up until 2007 where the total was 185 cases (per this report), and to date 2008 is at 182. a staggering increase in my opinion, for something that just happens spontaneously as some would have us believe. i don't believe it, not in 85%+ of all sporadic CJD cases. actually, i do not believe yet that anyone has proven that any of the sporadic CJD cases have been proven to be a spontaneous misfolding of a protein. there are many potential routes and sources for the sporadic CJD's. ...TSS
please see full text here ;
http://prionunitusaupdate2008.blogspot.com/2009/04/national-prion-disease-pathology.html
Rare BSE mutation raises concerns over risks to public health
SIR - Atypical forms (known as H- and L-type) of bovine spongiform encephalopathy (BSE) have recently appeared in several European countries as well as in Japan, Canada and the United States. This raises the unwelcome possibility that variant Creutzfeldt-Jakob disease (vCJD) could increase in the human population. Of the atypical BSE cases tested so far, a mutation in the prion protein gene (PRNP) has been detected in just one, a cow in Alabama with BSE; her healthy calf also carried the mutation (J. A. Richt and S. M. Hall PLoS Pathog. 4, e1000156; 2008). This raises the possibility that the disease could occasionally be genetic in origin. Indeed, the report of the UK BSE Inquiry in 2000 suggested that the UK epidemic had most likely originated from such a mutation and argued against the scrapierelated assumption. Such rare potential pathogenic PRNP mutations could occur in countries at present considered to be free of BSE, such as Australia and New Zealand. So it is important to maintain strict surveillance for BSE in cattle, with rigorous enforcement of the ruminant feed ban (many countries still feed ruminant proteins to pigs). Removal of specified risk material, such as brain and spinal cord, from cattle at slaughter prevents infected material from entering the human food chain. Routine genetic screening of cattle for PRNP mutations, which is now available, could provide additional data on the risk to the public. Because the point mutation identified in the Alabama animals is identical to that responsible for the commonest type of familial (genetic) CJD in humans, it is possible that the resulting infective prion protein might cross the bovine-human species barrier more easily. Patients with vCJD continue to be identified. The fact that this is happening less often should not lead to relaxation of the controls necessary to prevent future outbreaks. Malcolm A. Ferguson-Smith Cambridge University Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK e-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000029/!x-usc:mailto:maf12@cam.ac.uk Jürgen A. Richt College of Veterinary Medicine, Kansas State University, K224B Mosier Hall, Manhattan, Kansas 66506-5601, USA
NATUREVol 45726 February 2009
http://www.nature.com/nature/journal/v457/n7233/full/4571079b.html
see full text ;
Monday, May 11, 2009
Rare BSE mutation raises concerns over risks to public health
http://bse-atypical.blogspot.com/2009/05/rare-bse-mutation-raises-concerns-over.html
Saturday, March 22, 2008
10 Million Baby Boomers to have Alzheimer's in the coming decades 2008 Alzheimer's disease facts and figures
http://betaamyloidcjd.blogspot.com/2008/03/association-between-deposition-of-beta.html
http://betaamyloidcjd.blogspot.com/
TSS
CELL BIOLOGY
Beyond the prion principle
Adriano Aguzzi
It seems that many misfolded proteins can act like prions — spreading disease by imparting their misshapen structure to normal cellular counterparts. But how common are bona fide prions really?
The protein-only hypothesis of prion propagation is steadily gaining ground. First envisaged by John Stanley Griffith1 and later formalized by Stanley Prusiner2, this theory proposes the existence of an infectious agent composed solely of protein. Three reports, two in Nature Cell Biology3,4 and one in The Journal of Cell Biology5, now contend that, far from being confined to the rare prion diseases, prion-like transmission of altered proteins may occur in several human diseases of the brain and other organs.
Prions are now accepted as causing the transmissible spongiform encephalopathies, which include scrapie in sheep, bovine spongiform encephalopathy (BSE, or mad cow disease) and its human variant Creutzfeldt–Jakob disease. The infectious prion particle is made up of PrPSc, a misfolded and aggregated version of a normal protein known as PrPC. Like the growth of crystals, PrPSc propagates by recruiting monomeric PrPC into its aggregates — a process that has been replicated in vitro6 and in transgenic mice7. The breakage of PrPSc aggregates represents the actual replicative event, as it multiplies the number of active seeds8.
Apart from prion diseases, the misfolding and aggregation of proteins into various harmful forms, which are collectively known as amyloid, causes a range of diseases of the nervous system and other organs. The clinical characteristics of amyloidoses, however, gave little reason to suspect a relationship to prion diseases. Hints of prion-like behaviour in amyloid have emerged from studies of Alzheimer’s disease and Parkinson’s disease. Alzheimer’s disease had been suspected to be transmissible for some time: an early report9 of disease transmission to hamsters through white blood cells from people with Alzheimer’s disease caused great consternation, but was never reproduced. Much more tantalizing evidence came from the discovery10,11 that aggregates of the amyloid-â (Aâ) peptide found in the brain of people with Alzheimer’s disease could be transmitted to the brain of mice engineered to produce large amounts of the Aâ precursor protein APP. Another study12 has shown that healthy tissue grafted into the brain of people with Parkinson’s disease acquires intracellular Lewy bodies — aggregates of the Parkinson’s disease-associated protein á-synuclein. This suggests prion-like transmission of diseased protein from the recipient’s brain to the grafted cells.
These findings10–12 raise a provocative question. If protein aggregation depends on the introduction of ‘seeds’ and on the availability of the monomeric precursor, and if, as has been suggested13, amyloid represents the primordial state of all proteins, wouldn’t all proteins — under appropriate conditions — behave like prions in the presence of sufficient precursor? Acceptance of this concept is gaining momentum. For one thing, an increasing wealth of traits is being found in yeast, fungi and bacteria that can best be explained as prion-like phenomena (see table). And now, Ren and colleagues3 provide evidence for prion-like spread of polyglutamine (polyQ)- containing protein aggregates, which are similar to the aggregates found in Huntington’s disease. They show that polyQ aggregates can be taken up from the outside by mammalian cells. Once in the cytosol, the polyQ aggregates can grow by recruiting endogenous polyQ. Clavaguera et al.4 report similar findings in a mouse model of tauopathy, a neurodegenerative disease caused by intraneuronal aggregation of the microtubule-associated tau protein. Injection of mutant human tau into the brain of mice overexpressing normal human tau transmitted tauopathy, with intracellular aggregation of previously normal tau and spread of aggregates to neighbouring regions of the brain. Notably, full-blown tauopathy was not induced in mice that did not express human tau. Assuming that tau pathology wasn’t elicited by some indirect pathway (some mice overexpressing mutated human tau develop protein tangles even when exposed to un related amyloid aggregates14), this sequence of events is reminiscent of prions. Finally, Frost and colleagues5 show that extracellular tau aggregates can be taken up by cells in culture. Hence, tau can attack and penetrate cells from the outside, sporting predatory behaviour akin to that of prions.
Yet there is one crucial difference between actual prion diseases and diseases caused by other prion-like proteins (let’s call them prionoids) described so far (see table). The behaviour of prions is entirely comparable to that of any other infectious agent: for instance, prions are transmissible between individuals and often across species, and can be assayed with classic microbiological techniques, including titration by bioassay. Accordingly, prion diseases were long thought to be caused by viruses, and BSE created a worldwide panic similar to that currently being provoked by influenza. By contrast, although prionoids can ‘infect’ neighbouring molecules and sometimes even neighbouring cells, they do not spread within communities or cause epidemics such as those seen with BSE.
So, should any amyloid deserve an upgrade to a bone fide prion status? Currently, amyloid A (AA) amyloidosis may be the most promising candidate for a truly infectious disease caused by a self-propagating protein other than PrPSc. AA amyloid consists of orderly aggregated fragments of the SAA protein, and its deposition damages many organs of the body. Seeds of AA amyloid can be excreted in faeces15, and can induce amyloidosis if taken up orally (at least in geese)16. Also, AA amyloid may be transmitted between mice by transfusion of white blood cells17. So, like entero viruses and, perhaps, sheep scrapie prions, AA amyloid seems to display all the elements of a complete infectious life cycle, including uptake, replication and release from its host.
There are intriguing evolutionary implications to the above findings. If prionoids are ubiquitous, why didn’t evolution erect barriers to their pervasiveness? Maybe it is because the molecular transmissibility of aggregated states can sometimes be useful. Indeed, aggregation of the Sup35 protein, which leads to a prion-like phenomenon in yeast, may promote evolutionary adaptation by allowing yeast cells to temporarily activate DNA sequences that are normally untranslated18. Mammals have developed receptors for aggregates, and ironically PrPC may be one of them19, although these receptors have not been reported to mediate protective functions. Therefore, we shouldn’t be shocked if instances of beneficial prionoids emerge in mammals as well. ¦
Adriano Aguzzi is at the Institute of Neuropathology, University Hospital of Zurich, CH-8091 Zurich, Switzerland. e-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000029/!x-usc:mailto:adriano.aguzzi@usz.ch
1. Griffith, J. S. Nature 215, 1043–1044 (1967). 2. Prusiner, S. B. Science 216, 136–144 (1982). 3. Ren, P.-H. et al. Nature Cell Biol. 11, 219–225 (2009). 4. Clavaguera, F. et al. Nature Cell Biol. doi:10.1038/ncb1901 (2009). 5. Frost, B., Jacks, R. L. & Diamond, M. I. J. Biol. Chem. 284, 12845–12852 (2009). 6. Castilla, J., Saá, P., Hetz, C. & Soto, C. Cell 121, 195–206 (2005). 7. Sigurdson, C. J. et al. Proc. Natl Acad. Sci. USA 106, 304–309 (2009). 8. Aguzzi, A. & Polymenidou, M. Cell 116, 313–327 (2004). 9. Manuelidis, E. E. et al. Proc. Natl Acad. Sci. USA 85, 4898–4901 (1988). 10. Kane, M. D. et al. J. Neurosci. 20, 3606–3611 (2000). 11. Meyer-Luehmann, M. et al. Science 313, 1781–1784 (2006). 12. Li, J.-Y. et al. Nature Med. 14, 501–503 (2008). 13. Chiti, F. & Dobson, C. M. Annu. Rev. Biochem. 75, 333–366 (2006). 14. GÖtz, J., Chen, F., van Dorpe, J. & Nitsch, R. M. Science 293, 1491–1495 (2001). 15. Zhang, B. et al. Proc. Natl Acad. Sci. USA 105, 7263–7268 (2008). 16. Solomon, A. et al. Proc. Natl Acad. Sci. USA 104, 10998–11001 (2007). 17. Sponarova, J., NystrÖm, S. N. & Westermark, G. T. PLoS ONE 3, e3308 (2008). 18. True, H. L. & Lindquist, S. L. Nature 407, 477–483 (2000). 19. Laurén, J. et al. Nature 457, 1128–1132 (2009). PRIONS AND POTENTIAL PRIONOIDS Disease Protein Molecular transmissibility Infectious life cycle Prion diseases PrPSc Yes Yes Alzheimer’s disease Amyloid-ß Yes Not shown Tauopathies Tau Yes Not shown Parkinson’s disease a-Synuclein Host-to-graft Not shown AA amyloidosis Amyloid A Yes Possible Huntington’s disease Polyglutamine Yes Not shown Phenotype Protein Molecular transmissibility Infectious life cycle Suppressed translational termination (yeast) Sup35 Yes Not shown Heterokaryon incompatibility (filamentous fungi) Het-s Yes Not shown Biofilm promotion (bacteria) CsgA Yes Not shown In humans and animals, infectious prion diseases are caused by PrPSc, which spreads by recruiting its monomeric precursor PrPC into aggregates. Aggregates then multiply by breakage, a process that is termed molecular transmissibility. Other proteins involved in disease and in phenotypes of fungi and bacteria, can also undergo self-sustaining aggregation, but none of these ‘prionoid’ proteins behaves like typical infectious agents, nor do any of them enact a complete infectious life cycle — with the possible exception of AA amyloid. Correction In the News & Views article “Immunology: Immunity’s ancient arms” by Gary W. Litman and John P. Cannon (Nature 459, 784–786; 2009), the name of the fi rst author of the Nature paper under discussion was misspelt. The author’s name is P. Guo, not Gou as published.
© 2009 Macmillan Publishers Limited. All rights reserved
http://www.nature.com/nature/journal/v459/n7249/full/459924a.html
Thursday, February 26, 2009
'Harmless' prion protein linked to Alzheimer's disease Non-infectious form of prion protein could cause brain degeneration ???
http://betaamyloidcjd.blogspot.com/2009/02/harmless-prion-protein-linked-to.html
IN STRICT CONFIDENCE
TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
http://www.bseinquiry.gov.uk/files/yb/1993/01/05004001.pdf
CJD1/9 0185
Ref: 1M51A
IN STRICT CONFIDENCE
TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
1. CMO will wish to be aware that a meeting was held at DH yesterday, 4 January, to discuss the above findings. It was chaired by Professor Murray (Chairman of the MRC Co-ordinating Committee on Research in the Spongiform Encephalopathies in Man), and attended by relevant experts in the fields of Neurology, Neuropathology, molecular biology, amyloid biochemistry, and the spongiform encephalopathies, and by representatives of the MRC and AFRC.
2. Briefly, the meeting agreed that:
i) Dr Ridley et als findings of experimental induction of p amyloid in primates were valid, interesting and a significant advance in the understanding of neurodegeneradve disorders;
ii) there were no immediate implications for the public health, and no further safeguards were thought to be necessary at present; and
iii) additional research was desirable, both epidemiological and at the molecular level. Possible avenues are being followed up by DH and the MRC, but the details will require further discussion.
93/01.05/4.1tss
http://www.bseinquiry.gov.uk/files/yb/1993/01/05004001.pdf
Regarding Alzheimer's disease
(note the substantial increase on a yearly basis)
http://www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
snip...
The pathogenesis of these diseases was compared to Alzheimer's disease at a molecular level...
snip...
http://www.bseinquiry.gov.uk/files/yb/1990/03/12003001.pdf
And NONE of this is relevant to BSE?
There is also the matter whether the spectrum of ''prion disease'' is wider than that recognized at present.
http://www.bseinquiry.gov.uk/files/yb/1990/07/06005001.pdf
THE LINE TO TAKE.
http://www.bseinquiry.gov.uk/files/yb/1990/07/09001001.pdf
BSE101/1 0136
IN CONFIDENCE
5 NOV 1992
CMO From: Dr J S Metters DCMO 4 November 1992
TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES
http://www.bseinquiry.gov.uk/files/yb/1992/11/04001001.pdf
also, see the increase of Alzheimer's from 1981 to 1986
http://www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
Tuesday, August 26, 2008
Alzheimer's Transmission of AA-amyloidosis: Similarities with Prion Disorders NEUROPRION 2007 FC4.3
http://betaamyloidcjd.blogspot.com/2008/08/alzheimers-transmission-of-aa.html
see full text ;
http://betaamyloidcjd.blogspot.com/2009/02/harmless-prion-protein-linked-to.html
Alzheimer's and CJD
http://betaamyloidcjd.blogspot.com/
Saturday, March 22, 2008
10 Million Baby Boomers to have Alzheimer's in the coming decades 2008 Alzheimer's disease facts and figures
http://betaamyloidcjd.blogspot.com/2008/03/association-between-deposition-of-beta.html
re-Association between Deposition of Beta-Amyloid and Pathological Prion Protein in Sporadic Creutzfeldt-Jakob Disease
http://betaamyloidcjd.blogspot.com/2008/04/re-association-between-deposition-of.html
Elsevier Editorial System(tm) for The Lancet Infectious Diseases Manuscript Draft Manuscript Number:
Title: HUMAN and ANIMAL TSE Classifications i.e. mad cow disease and the UKBSEnvCJD only theory
Article Type: Personal View Corresponding
snip...see full text 31 pages ;
http://www.regulations.gov/fdmspublic/ContentViewer?objectId=090000648027c28e&disposition=attachment&contentType=pdf
Tuesday, August 26, 2008
Alzheimer's Transmission of AA-amyloidosis: Similarities with Prion Disorders NEUROPRION 2007 FC4.3
http://betaamyloidcjd.blogspot.com/2008/08/alzheimers-transmission-of-aa.html
Sunday, June 7, 2009
ALZHEIMER'S DISEASE IS TRANSMISSIBLE
http://betaamyloidcjd.blogspot.com/2009/06/alzheimers-disease-is-transmissible.html
Diagnosis and Reporting of Creutzfeldt-Jakob Disease Singeltary, Sr et al. JAMA.2001; 285: 733-734.
Full Text
Tue, 13 Feb 2001 JAMA Vol. 285 No. 6, February 14, 2001 Letters
Diagnosis and Reporting of Creutzfeldt-Jakob Disease
To the Editor:
In their Research Letter in JAMA. 2000;284:2322-2323, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.
Terry S. Singeltary, Sr Bacliff, Tex
To the Editor:
At the time of my mother's death, various diagnoses were advanced such as "rapid progressive Alzheimer disease," psychosis, and dementia. Had I not persisted and personally sought and arranged a brain autopsy, her death certificate would have read cardiac failure and not CJD.
Through CJD Voice1 I have corresponded with hundreds of grief-stricken families who are so devastated by this horrific disease that brain autopsy is the furthest thing from their minds. In my experience, very few physicians suggest it to the family. After the death and when families reflect that they never were sure what killed their loved one it is too late to find the true cause of death. In the years since my mother died I think that the increasing awareness of the nature of CJD has only resulted in fewer pathologists being willing to perform an autopsy in a suspected case of CJD.
People with CJD may die with incorrect diagnoses of dementia, psychosis, Alzheimer disease, and myriad other neurological diseases. The true cause of death will only be known if brain autopsies are suggested to the families. Too often the physician's comment is, "Well, it could be CJD but that is so rare it isn't likely."
Until CJD is required to be reported to state health departments, as other diseases are, there will be no accurate count of CJD deaths in the United States and thus no way to know if the number of deaths is decreasing, stable, or increasing as it has recently in the United Kingdom.
Dorothy E. Kraemer Stillwater, Okla
In Reply:
Mr Singeltary and Ms Kraemer express an underlying concern that our recently reported mortality surveillance estimate of about 1 CJD case per million population per year in the United States since 1985 may greatly underestimate the true incidence of this disease. Based on evidence from epidemiologic investigations both within and outside the United States, we believe that these national estimates are reasonably accurate.
Even during the 1990s in the United Kingdom, where much attention and public health resources have been devoted to prion disease surveillance, the reported incidence of classic CJD is similar to that reported in the United States.
In addition, in 1996, active US surveillance for CJD and new variant (nv) CJD in 5 sites detected no evidence of the occurrence of nvCJD and showed that 86% of the CJD cases in these sites were identifiable through routinely collected mortality data.
Our report provides additional evidence against the occurrence of nvCJD in the United States based on national mortality data analyses and enhanced surveillance. It specifically mentions a new center for improved pathology surveillance. We hope that the described enhancements along with the observations of Singeltary and Kraemer will encourage medical care providers to suggest brain autopsies for more suspected CJD cases to facilitate the identification of potentially misdiagnosed CJD cases and to help monitor the possible occurrence of nvCJD.
Creutzfeldt-Jakob disease is not on the list of nationally notifiable diseases. In those states where surveillance personnel indicate that making this disease officially notifiable would meaningfully facilitate collection of data that are needed to monitor the incidence of CJD and nvCJD, including the obtaining of brain autopsy results, we encourage such a change. However, adding CJD to the notifiable diseases surveillance system may lead to potentially wasteful, duplicative reporting because the vast majority of the diagnosed cases would also be reported through the mortality surveillance system.
Furthermore, making CJD a notifiable disease may not necessarily help identify undiagnosed CJD cases. The unique characteristics of CJD make mortality data a useful surrogate for ongoing surveillance. Unlike many other neurologic diseases, CJD is invariably fatal and in most cases rapidly progressive and distinguishable clinically from other neurologic diseases.
Because CJD is least accurately diagnosed early in the course of the illness, notifiable disease surveillance of CJD could be less accurate than mortality surveillance of CJD. In addition, because death as a condition is more completely and consistently reported, mortality surveillance has the advantage of being ongoing and readily available.
The absence of CJD and nvCJD from the list of nationally notifiable diseases should not be interpreted to mean that they are not important to public health; this list does not include all such diseases. We encourage medical caregivers to report to or consult with appropriate public health authorities about any diagnosed case of a transmissible disease for which a special public health response may be needed, including nvCJD, and any patient in whom iatrogenic transmission of CJD may be suspected.
Robert V. Gibbons, MD, MPH Robert C. Holman, MS Ermias D. Belay, MD Lawrence B. Schonberger, MD, MPH Division of Viral and Rickettsial Diseases National Center for Infectious Diseases Centers for Disease Control and Prevention Atlanta, Ga
http://jama.ama-assn.org/cgi/content/full/285/6/733?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=dignosing+and+reporting+creutzfeldt+jakob+disease&searchid=1048865596978_1528&stored_search=&FIRSTINDEX=0&journalcode=jama
Full Text Diagnosis and Reporting of Creutzfeldt-Jakob Disease Singeltary, Sr et al. JAMA.2001; 285: 733-734.
http://jama.ama-assn.org/cgi/content/full/285/6/733?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=dignosing+and+reporting+creutzfeldt+jakob+disease&searchid=1048865596978_1528&stored_search=&FIRSTINDEX=0&journalcode=jama
Book
The Pathological Protein
Publisher Springer New York DOI 10.1007/b97488 Copyright 2003 ISBN 978-0-387-95508-7 (Print) 978-0-387-21755-0 (Online) DOI 10.1007/0-387-21755-X_14 Pages 223-237 Subject Collection Humanities, Social Sciences and Law SpringerLink
Laying Odds
snip...
Answering critics like Terry Singeltary, who feels that the U.S. under- counts CJD, Schonberger conceded that the current surveillance system has errors but stated that most of the errors will be confined to the older population.
snip...
http://www.springerlink.com/content/r2k2622661473336/
http://books.google.com/books?id=ePbrQNFrHtoC&pg=PA223&lpg=PA223&dq=SINGELTARY+pathological+protein+it
The statistical incidence of CJD cases in the United States has been revised to reflect that there is one case per 9000 in adults age 55 and older. Eighty-five percent of the cases are sporadic, meaning there is no known cause at present.
http://www.cjdfoundation.org/fact.html
http://cjdusa.blogspot.com/
SPORADIC CJD CASES RISING IN U.S.A 2009 UPDATE
Monday, April 20, 2009
National Prion Disease Pathology Surveillance Center Cases Examined1 (December 31, 2008)
April 20, 2009
National Prion Disease Pathology Surveillance Center Cases Examined1 (December 31, 2008)
National Prion Disease Pathology Surveillance Center Cases Examined1
(December 31, 2008)
Year Total Referrals2 Prion Disease Sporadic Familial Iatrogenic vCJD
1996 & earlier 42 32 28 4 0 0
1997 115 68 59 9 0 0
1998 93 53 45 7 1 0
1999 115 69 61 8 0 0
2000 151 103 89 14 0 0
2001 210 118 108 9 0 0
2002 258 147 123 22 2 0
2003 273 176 135 41 0 0
2004 335 184 162 21 0 13
2005 346 193 154 38 1 0
2006 380 192 159 32 0 14
2007 370 212 185 26 0 0
2008 383 228 182 23 0 0
TOTAL 30715 17756 1490 254 4 2
1 Listed based on the year of death or, if not available, on year of referral; 2 Cases with suspected prion disease for which brain tissue and/or blood (in familial cases) were submitted; 3 Disease acquired in the United Kingdom; 4 Disease acquired in Saudi Arabia; 5 Includes 20 cases in which the diagnosis is pending, and 17 inconclusive cases; 6 Includes 25 cases with type determination pending in which the diagnosis of vCJD has been excluded.
Rev 2/13/09 National
http://www.cjdsurveillance.com/pdf/case-table.pdf
http://www.cjdsurveillance.com/resources-casereport.html
http://www.aan.com/news/?event=read&article_id=4397&page=72.45.45
*5 Includes 20 cases in which the diagnosis is pending, and 17 inconclusive cases; *6 Includes 25 cases with type determination pending in which the diagnosis of vCJD has been excluded.
Greetings,
it would be interesting to know what year these atypical cases occurred, as opposed to lumping them in with the totals only.
are they accumulating ?
did they occur in one year, two years, same state, same city ?
location would be very interesting ?
age group ?
sex ?
how was it determined that nvCJD was ruled out ?
from 1997, the year i started dealing with this nightmare, there were 28 cases (per this report), up until 2007 where the total was 185 cases (per this report), and to date 2008 is at 182. a staggering increase in my opinion, for something that just happens spontaneously as some would have us believe. i don't believe it, not in 85%+ of all sporadic CJD cases. actually, i do not believe yet that anyone has proven that any of the sporadic CJD cases have been proven to be a spontaneous misfolding of a protein. there are many potential routes and sources for the sporadic CJD's. ...TSS
please see full text here ;
http://prionunitusaupdate2008.blogspot.com/2009/04/national-prion-disease-pathology.html
Rare BSE mutation raises concerns over risks to public health
SIR - Atypical forms (known as H- and L-type) of bovine spongiform encephalopathy (BSE) have recently appeared in several European countries as well as in Japan, Canada and the United States. This raises the unwelcome possibility that variant Creutzfeldt-Jakob disease (vCJD) could increase in the human population. Of the atypical BSE cases tested so far, a mutation in the prion protein gene (PRNP) has been detected in just one, a cow in Alabama with BSE; her healthy calf also carried the mutation (J. A. Richt and S. M. Hall PLoS Pathog. 4, e1000156; 2008). This raises the possibility that the disease could occasionally be genetic in origin. Indeed, the report of the UK BSE Inquiry in 2000 suggested that the UK epidemic had most likely originated from such a mutation and argued against the scrapierelated assumption. Such rare potential pathogenic PRNP mutations could occur in countries at present considered to be free of BSE, such as Australia and New Zealand. So it is important to maintain strict surveillance for BSE in cattle, with rigorous enforcement of the ruminant feed ban (many countries still feed ruminant proteins to pigs). Removal of specified risk material, such as brain and spinal cord, from cattle at slaughter prevents infected material from entering the human food chain. Routine genetic screening of cattle for PRNP mutations, which is now available, could provide additional data on the risk to the public. Because the point mutation identified in the Alabama animals is identical to that responsible for the commonest type of familial (genetic) CJD in humans, it is possible that the resulting infective prion protein might cross the bovine-human species barrier more easily. Patients with vCJD continue to be identified. The fact that this is happening less often should not lead to relaxation of the controls necessary to prevent future outbreaks. Malcolm A. Ferguson-Smith Cambridge University Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK e-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000029/!x-usc:mailto:maf12@cam.ac.uk Jürgen A. Richt College of Veterinary Medicine, Kansas State University, K224B Mosier Hall, Manhattan, Kansas 66506-5601, USA
NATUREVol 45726 February 2009
http://www.nature.com/nature/journal/v457/n7233/full/4571079b.html
see full text ;
Monday, May 11, 2009
Rare BSE mutation raises concerns over risks to public health
http://bse-atypical.blogspot.com/2009/05/rare-bse-mutation-raises-concerns-over.html
Saturday, March 22, 2008
10 Million Baby Boomers to have Alzheimer's in the coming decades 2008 Alzheimer's disease facts and figures
http://betaamyloidcjd.blogspot.com/2008/03/association-between-deposition-of-beta.html
http://betaamyloidcjd.blogspot.com/
TSS
Monday, June 8, 2009
Transmission and spreading of tauopathy in transgenic mouse brain
Letter abstract
--------------------------------------------------------------------------------
Nature Cell Biology Published online: 7 June 2009 doi:10.1038/ncb1901
Transmission and spreading of tauopathy in transgenic mouse brain
Florence Clavaguera1, Tristan Bolmont2, R. Anthony Crowther3, Dorothee Abramowski4, Stephan Frank1, Alphonse Probst1, Graham Fraser3, Anna K. Stalder5, Martin Beibel4, Matthias Staufenbiel4, Mathias Jucker2, Michel Goedert3,6 & Markus Tolnay1,6
Top of pageHyperphosphorylated tau makes up the filamentous intracellular inclusions of several neurodegenerative diseases, including Alzheimer's disease1. In the disease process, neuronal tau inclusions first appear in the transentorhinal cortex from where they seem to spread to the hippocampal formation and neocortex2. Cognitive impairment becomes manifest when inclusions reach the hippocampus, with abundant neocortical tau inclusions and extracellular -amyloid deposits being the defining pathological hallmarks of Alzheimer's disease. An abundance of tau inclusions, in the absence of -amyloid deposits, defines Pick's disease, progressive supranuclear palsy, corticobasal degeneration and other diseases1. Tau mutations cause familial forms of frontotemporal dementia, establishing that tau protein dysfunction is sufficient to cause neurodegeneration and dementia3, 4, 5. Thus, transgenic mice expressing mutant (for example, P301S) human tau in nerve cells show the essential features of tauopathies, including neurodegeneration and abundant filaments made of hyperphosphorylated tau protein6, 8. By contrast, mouse lines expressing single isoforms of wild-type human tau do not produce tau filaments or show neurodegeneration7, 8. Here we have used tau-expressing lines to investigate whether experimental tauopathy can be transmitted. We show that injection of brain extract from mutant P301S tau-expressing mice into the brain of transgenic wild-type tau-expressing animals induces assembly of wild-type human tau into filaments and spreading of pathology from the site of injection to neighbouring brain regions.
Department of Neuropathology, Institute of Pathology, University of Basel, Basel, Switzerland. Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany. MRC Laboratory of Molecular Biology, Cambridge, UK. Novartis Institutes for Biomedical Research, Basel, Switzerland. Neurology and Neurobiology, University Hospital, Basel, Switzerland. These authors contributed equally to this work Correspondence to: Michel Goedert3,6 e-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000101/!x-usc:mailto:mtolnay@uhbs.ch
Correspondence to: Markus Tolnay1,6 e-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000101/!x-usc:mailto:mg@mrc-lmb.cam.ac.uk
http://www.nature.com/ncb/journal/vaop/ncurrent/abs/ncb1901.html
CJD1/9 0185Ref: 1M51AIN STRICT CONFIDENCETRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES1.
CMO will wish to be aware that a meeting was held at DH yesterday, 4 January, to discuss the above findings. It was chaired by Professor Murray (Chairman of the MRC Co-ordinating Committee on Research in the Spongiform Encephalopathies in Man), and attended by relevant experts in the fields of Neurology, Neuropathology, molecular biology, amyloid biochemistry, and the spongiform encephalopathies, and by representatives of the MRC and AFRC.2. Briefly, the meeting agreed that:i) Dr Ridley et als findings of experimental induction of p amyloid in primates were valid, interesting and a significant advance in the understanding of neurodegeneradve disorders;ii) there were no immediate implications for the public health, and no further safeguards were thought to be necessary at present; andiii) additional research was desirable, both epidemiological and at the molecular level. Possible avenues are being followed up by DH and the MRC, but the details will require further discussion.93/01.05/4.1
http://www.bseinquiry.gov.uk/files/yb/1993/01/05004001.pdf
Regarding Alzheimer's disease(note the substantial increase on a yearly basis)
http://www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
snip...
The pathogenesis of these diseases was compared to Alzheimer's disease at a molecular level...
snip...
http://www.bseinquiry.gov.uk/files/yb/1990/03/12003001.pdf
And NONE of this is relevant to BSE?There is also the matter whether the spectrum of ''prion disease'' is wider than that recognized at present.
http://www.bseinquiry.gov.uk/files/yb/1990/07/06005001.pdf
???
http://www.bseinquiry.gov.uk/files/yb/1990/07/09001001.pdf
BSE101/1 0136IN CONFIDENCE5 NOV 1992CMO From: Dr J S Metters DCMO 4 November 1992TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES
http://www.bseinquiry.gov.uk/files/yb/1992/11/04001001.pdf
also, see the increase of Alzheimer's from 1981 to 1986
http://www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
Tuesday, August 26, 2008
Alzheimer's Transmission of AA-amyloidosis: Similarities with Prion Disorders NEUROPRION 2007 FC4.3
http://betaamyloidcjd.blogspot.com/2008/08/alzheimers-transmission-of-aa.html
see full text ;
http://betaamyloidcjd.blogspot.com/2009/02/harmless-prion-protein-linked-to.html
Alzheimer's and CJD
http://betaamyloidcjd.blogspot.com/
Saturday, March 22, 2008
10 Million Baby Boomers to have Alzheimer's in the coming decades 2008 Alzheimer's disease facts and figures
http://betaamyloidcjd.blogspot.com/2008/03/association-between-deposition-of-beta.htmlre-
Association between Deposition of Beta-Amyloid and Pathological Prion Protein in Sporadic Creutzfeldt-Jakob Disease
http://betaamyloidcjd.blogspot.com/2008/04/re-association-between-deposition-of.html
Sunday, June 7, 2009
ALZHEIMER'S DISEASE IS TRANSMISSIBLE
http://betaamyloidcjd.blogspot.com/2009/06/alzheimers-disease-is-transmissible.html
--------------------------------------------------------------------------------
Nature Cell Biology Published online: 7 June 2009 doi:10.1038/ncb1901
Transmission and spreading of tauopathy in transgenic mouse brain
Florence Clavaguera1, Tristan Bolmont2, R. Anthony Crowther3, Dorothee Abramowski4, Stephan Frank1, Alphonse Probst1, Graham Fraser3, Anna K. Stalder5, Martin Beibel4, Matthias Staufenbiel4, Mathias Jucker2, Michel Goedert3,6 & Markus Tolnay1,6
Top of pageHyperphosphorylated tau makes up the filamentous intracellular inclusions of several neurodegenerative diseases, including Alzheimer's disease1. In the disease process, neuronal tau inclusions first appear in the transentorhinal cortex from where they seem to spread to the hippocampal formation and neocortex2. Cognitive impairment becomes manifest when inclusions reach the hippocampus, with abundant neocortical tau inclusions and extracellular -amyloid deposits being the defining pathological hallmarks of Alzheimer's disease. An abundance of tau inclusions, in the absence of -amyloid deposits, defines Pick's disease, progressive supranuclear palsy, corticobasal degeneration and other diseases1. Tau mutations cause familial forms of frontotemporal dementia, establishing that tau protein dysfunction is sufficient to cause neurodegeneration and dementia3, 4, 5. Thus, transgenic mice expressing mutant (for example, P301S) human tau in nerve cells show the essential features of tauopathies, including neurodegeneration and abundant filaments made of hyperphosphorylated tau protein6, 8. By contrast, mouse lines expressing single isoforms of wild-type human tau do not produce tau filaments or show neurodegeneration7, 8. Here we have used tau-expressing lines to investigate whether experimental tauopathy can be transmitted. We show that injection of brain extract from mutant P301S tau-expressing mice into the brain of transgenic wild-type tau-expressing animals induces assembly of wild-type human tau into filaments and spreading of pathology from the site of injection to neighbouring brain regions.
Department of Neuropathology, Institute of Pathology, University of Basel, Basel, Switzerland. Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany. MRC Laboratory of Molecular Biology, Cambridge, UK. Novartis Institutes for Biomedical Research, Basel, Switzerland. Neurology and Neurobiology, University Hospital, Basel, Switzerland. These authors contributed equally to this work Correspondence to: Michel Goedert3,6 e-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000101/!x-usc:mailto:mtolnay@uhbs.ch
Correspondence to: Markus Tolnay1,6 e-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000101/!x-usc:mailto:mg@mrc-lmb.cam.ac.uk
http://www.nature.com/ncb/journal/vaop/ncurrent/abs/ncb1901.html
CJD1/9 0185Ref: 1M51AIN STRICT CONFIDENCETRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES1.
CMO will wish to be aware that a meeting was held at DH yesterday, 4 January, to discuss the above findings. It was chaired by Professor Murray (Chairman of the MRC Co-ordinating Committee on Research in the Spongiform Encephalopathies in Man), and attended by relevant experts in the fields of Neurology, Neuropathology, molecular biology, amyloid biochemistry, and the spongiform encephalopathies, and by representatives of the MRC and AFRC.2. Briefly, the meeting agreed that:i) Dr Ridley et als findings of experimental induction of p amyloid in primates were valid, interesting and a significant advance in the understanding of neurodegeneradve disorders;ii) there were no immediate implications for the public health, and no further safeguards were thought to be necessary at present; andiii) additional research was desirable, both epidemiological and at the molecular level. Possible avenues are being followed up by DH and the MRC, but the details will require further discussion.93/01.05/4.1
http://www.bseinquiry.gov.uk/files/yb/1993/01/05004001.pdf
Regarding Alzheimer's disease(note the substantial increase on a yearly basis)
http://www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
snip...
The pathogenesis of these diseases was compared to Alzheimer's disease at a molecular level...
snip...
http://www.bseinquiry.gov.uk/files/yb/1990/03/12003001.pdf
And NONE of this is relevant to BSE?There is also the matter whether the spectrum of ''prion disease'' is wider than that recognized at present.
http://www.bseinquiry.gov.uk/files/yb/1990/07/06005001.pdf
???
http://www.bseinquiry.gov.uk/files/yb/1990/07/09001001.pdf
BSE101/1 0136IN CONFIDENCE5 NOV 1992CMO From: Dr J S Metters DCMO 4 November 1992TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES
http://www.bseinquiry.gov.uk/files/yb/1992/11/04001001.pdf
also, see the increase of Alzheimer's from 1981 to 1986
http://www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
Tuesday, August 26, 2008
Alzheimer's Transmission of AA-amyloidosis: Similarities with Prion Disorders NEUROPRION 2007 FC4.3
http://betaamyloidcjd.blogspot.com/2008/08/alzheimers-transmission-of-aa.html
see full text ;
http://betaamyloidcjd.blogspot.com/2009/02/harmless-prion-protein-linked-to.html
Alzheimer's and CJD
http://betaamyloidcjd.blogspot.com/
Saturday, March 22, 2008
10 Million Baby Boomers to have Alzheimer's in the coming decades 2008 Alzheimer's disease facts and figures
http://betaamyloidcjd.blogspot.com/2008/03/association-between-deposition-of-beta.htmlre-
Association between Deposition of Beta-Amyloid and Pathological Prion Protein in Sporadic Creutzfeldt-Jakob Disease
http://betaamyloidcjd.blogspot.com/2008/04/re-association-between-deposition-of.html
Sunday, June 7, 2009
ALZHEIMER'S DISEASE IS TRANSMISSIBLE
http://betaamyloidcjd.blogspot.com/2009/06/alzheimers-disease-is-transmissible.html
Labels:
Alzheimer's,
CJD,
mad cow disease,
Pathological Prion Protein,
TAU,
TSE
Sunday, June 7, 2009
ALZHEIMER'S DISEASE IS TRANSMISSIBLE
Mice injected with Alzheimer's cast new light on dementia
Alok Jha guardian.co.uk, Sunday 7 June 2009 19.11 BST
Scientists have found that harmful tangles of proteins that cause diseases such as Alzheimer's can be transmitted from one brain to another, spreading and causing damage after being injected into the brains of mice. The researchers stressed, however, that Alzheimer's was not contagious and said it could not be caught, for example, through blood transfusions.
Alzheimer's and similar neurodegenerative diseases can be caused by the build-up in the brain of tangled masses of a type of protein called tau. They destroy brain function and, when they damage large amounts of tissue, can lead to dementia.
In experiments on mice, researchers found that the tau tangles could spread in the brain, as though they were an infectious agent, and be injected in tissue from the brain of an affected mouse into the brain of a healthy one. The research is published tomorrow in the journal Nature Cell Biology, and gives scientists a much better idea of how to target therapies for neurodegenerative diseases.
Michel Goedert of the Medical Research Council's Laboratory of Molecular Biology in Cambridge, who took part in the study, said the work opened up new avenues in understanding and allowing scientists to experiment with the causes of dementia.
"This research in mice does not show that tau pathology is contagious or it can spread easily from mouse to mouse - what it has revealed is how tau tangles spread within brain tissues of individual mice," he said. "It suggests that tangles of proteins that build up in the brain to cause symptoms could have some contagious properties within brain tissue but not between mice that haven't been injected with tissue from another mouse and certainly not between people." Though they are also bits of protein, tau tangles do transmit in the same way as prions, the proteins that cause diseases such as vCJD and mad cow disease by destroying brain tissue, because they cannot be passed easily between individuals.
Rebecca Wood, chief executive of the Alzheimer's Research Trust, said: "This greater understanding of how tangles spread in Alzheimer's may lead to new ways of stopping them and defeating the disease." Abnormal tangles build up in the brain during Alzheimer's and other diseases of the brain. It's not clear how that happens - but it is clear that Alzheimer's itself is not contagious. We desperately need more research like this to find answers to dementia, a cruel condition that affects 700,000 people in the UK."
There is still much unknown about the changes in tau protein that lead to tangle formation in humans and, eventually, widespread brain cell death. But
Susanne Sorensen, head of research at the Alzheimer's Society, said: "Each new piece of knowledge helps build a better picture and takes us closer to the point where we can stop loss of brain tissue and dementia for good."
http://www.guardian.co.uk/science/2009/jun/07/alzheimers-transmission-mice-dementia-research
CJD1/9 0185
Ref: 1M51A
IN STRICT CONFIDENCE
TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
1. CMO will wish to be aware that a meeting was held at DH yesterday, 4 January, to discuss the above findings. It was chaired by Professor Murray (Chairman of the MRC Co-ordinating Committee on Research in the Spongiform Encephalopathies in Man), and attended by relevant experts in the fields of Neurology, Neuropathology, molecular biology, amyloid biochemistry, and the spongiform encephalopathies, and by representatives of the MRC and AFRC.
2. Briefly, the meeting agreed that:
i) Dr Ridley et als findings of experimental induction of p amyloid in primates were valid, interesting and a significant advance in the understanding of neurodegeneradve disorders;
ii) there were no immediate implications for the public health, and no further safeguards were thought to be necessary at present; and
iii) additional research was desirable, both epidemiological and at the molecular level. Possible avenues are being followed up by DH and the MRC, but the details will require further discussion.
93/01.05/4.1
http://collections.europarchive.org/tna/20080102191246/http://www.bseinquiry.gov.uk/files/yb/1993/01/05004001.pdf
Regarding Alzheimer's disease
(note the substantial increase on a yearly basis)
http://collections.europarchive.org/tna/20080103032314/http://www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
snip...
The pathogenesis of these diseases was compared to Alzheimer's disease at a molecular level...
snip...
http://collections.europarchive.org/tna/20080102220341/http://www.bseinquiry.gov.uk/files/yb/1990/03/12003001.pdf
And NONE of this is relevant to BSE?
There is also the matter whether the spectrum of ''prion disease'' is wider than that recognized at present.
http://collections.europarchive.org/tna/20080102223915/http://www.bseinquiry.gov.uk/files/yb/1990/07/06005001.pdf
???
http://collections.europarchive.org/tna/20080102224230/http://www.bseinquiry.gov.uk/files/yb/1990/07/09001001.pdf
BSE101/1 0136
IN CONFIDENCE
CMO
From: Dr J S Metters DCMO
4 November 1992
TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES
1. Thank you for showing me Diana Dunstan's letter. I am glad that MRC have recognised the public sensitivity of these findings and intend to report them in their proper context. This hopefully will avoid misunderstanding and possible distortion by the media to portray the results as having more greater significance than the findings so far justify.
2. Using a highly unusual route of transmission (intra-cerebral injection) the researchers have demonstrated the transmission of a pathological process from two cases one of severe Alzheimer's disease the other of Gerstmann-Straussler disease to marmosets. However they have not demonstrated the transmission of either clinical condition as the "animals were behaving normally when killed", As the report emphasises the unanswered question is whether the disease condition would have revealed itself if the marmosets had lived longer. They are planning further research to see if the conditions, as opposed to the partial pathological process, is transmissible.
What are the implications for public health?
3. The route of transmission is very specific and in the natural state of things highly unusual. However it could be argued that the results reveal a potential risk, in that brain tissue from these two patients has been shown to transmit a pathological process, Should therefore brain tissue from such cases be regarded as potentially infective? Pathologists, morticians, neuro surgeons and those assisting at neuro surgical procedures and others coming into contact with "raw" human brain tissue could in theory be at risk. However, on a priori grounds given the highly specific route of transmission in these experiments that risk must be negligible if the usual precautions for handling brain tissue are observed.
92/11.4/1.1
4. The other dimension to consider is the public reaction. To some extent the GSS case demonstrates little more than the transmission of BSE to a pig by intra-cerebral injection. If other prion diseases can be transmitted in this way it is little surprise that some pathological findings observed in GSS were also transmissible to a marmoset. But the transmission of features of Alzheimer's pathology is a different matter, given the much greater frequency of this disease and raises the unanswered question whether some cases are the result of a transmissible prion. The only tenable public line will be that "more research is required" before that hypothesis could be evaluated. The possibility on a transmissible prion remains open. In the meantime MRC needs carefully to consider the range and sequence of studies needed to follow through from the preliminary observations in these two cases. Not a particularly comfortable message, but until we know more about the causation of Alzheimer's disease the total reassurance is not practical.
J S METTERS Room 509 Richmond House Pager No: 081-884 3344 Callsign: DOH 832
92/11.4/1.2
http://collections.europarchive.org/tna/20081106170650/http://www.bseinquiry.gov.uk/files/yb/1992/11/04001001.pdf
CJD1/9 0185
Ref: 1M51A
IN STRICT CONFIDENCE
From: Dr. A Wight
Date: 5 January 1993
Copies:
Dr Metters
Dr Skinner
Dr Pickles
Dr Morris
Mr Murray
TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
1. CMO will wish to be aware that a meeting was held at DH yesterday, 4 January, to discuss the above findings. It was chaired by Professor Murray (Chairman of the MRC Co-ordinating Committee on Research in the Spongiform Encephalopathies in Man), and attended by relevant experts in the fields of Neurology, Neuropathology, molecular biology, amyloid biochemistry, and the spongiform encephalopathies, and by representatives of the MRC and AFRC.
2. Briefly, the meeting agreed that:
i) Dr Ridley et als findings of experimental induction of B amyloid in primates were valid, interesting and a significant advance in the understanding of neurodegeneradve disorders;
ii) there were no immediate implications for the public health, and no further safeguards were thought to be necessary at present; and
iii) additional research was desirable, both epidemiological and at the molecular level. Possible avenues are being followed up by DH and the MRC, but the details will require further discussion.
93/01.05/4.1
http://collections.europarchive.org/tna/20080102191246/http://www.bseinquiry.gov.uk/files/yb/1993/01/05004001.pdf
also, see the increase of Alzheimer's from 1981 to 1986
http://www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
Tuesday, August 26, 2008
Alzheimer's Transmission of AA-amyloidosis: Similarities with Prion Disorders NEUROPRION 2007 FC4.3
http://betaamyloidcjd.blogspot.com/2008/08/alzheimers-transmission-of-aa.html
see full text ;
http://betaamyloidcjd.blogspot.com/2009/02/harmless-prion-protein-linked-to.html
Alzheimer's and CJD
http://betaamyloidcjd.blogspot.com/
Saturday, March 22, 2008
10 Million Baby Boomers to have Alzheimer's in the coming decades 2008 Alzheimer's disease facts and figures
http://betaamyloidcjd.blogspot.com/2008/03/association-between-deposition-of-beta.html
re-Association between Deposition of Beta-Amyloid and Pathological Prion Protein in Sporadic Creutzfeldt-Jakob Disease
http://betaamyloidcjd.blogspot.com/2008/04/re-association-between-deposition-of.html
Wednesday, April 14, 2010
Food Combination and Alzheimer Disease Risk A Protective Diet
http://betaamyloidcjd.blogspot.com/2010/04/food-combination-and-alzheimer-disease.html
Wednesday, March 31, 2010
Neurobiology of Disease Molecular Cross Talk between Misfolded Proteins in Animal Models of Alzheimer's and Prion Diseases
http://betaamyloidcjd.blogspot.com/2010/03/neurobiology-of-disease-molecular-cross.html
Tuesday, August 26, 2008
Alzheimer's Transmission of AA-amyloidosis: Similarities with Prion Disorders NEUROPRION 2007 FC4.3
http://betaamyloidcjd.blogspot.com/2008/08/alzheimers-transmission-of-aa.html
P03.139
Cellular Prion Protein Regulates the ß-Secretase Cleavage of the Alzheimer's Amyloid Precursor Protein
Hooper, NM1; Parkin, ET1; Watt, NT1; Baybutt, H2; Manson, J2; Hussain, I3; Turner, AJ1 1University of Leeds, Institute of Molecular and Cellular Biology, UK; 2Roslin Institute, Neuropathogenesis Unit, UK; 3GlaxoSmithKline, Neurodegeneration Research, UK
Background: The normal cellular function of the prion protein (PrP), the causative agent of the transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease (CJD) in humans, remains enigmatic. Several studies have reported combinations of Alzheimer's Disease (AD) and CJD neuropathology and the Val/Met129 polymorphism in the PrP gene has been identified as a risk factor for early-onset AD, leading to speculation that there may be some pathogenic connection between these two neurodegenerative conditions. The amyloid ß (Aß) peptides that cause AD are derived from the amyloid precursor protein (APP) through sequential proteolytic cleavage by the ß-secretase (BACE1) and the g-secretase complex. Aim: As both APP and PrP are cleaved by zinc metalloproteases of the ADAM family, we investigated whether PrP alters the proteolytic processing of APP. Results: Here we show that expression of PrP in SH-SY5Y cells dramatically downregulated the cleavage of APP by BACE1 and reduced the secretion of Aß peptides into the conditioned medium by >92%. Conversely, siRNA reduction of endogenous PrP in N2a cells led to an increase in secreted Aß. Furthermore, levels of Aß were significantly increased in the brains of PrP null mice as compared with wild type mice. Two mutants of PrP, PG14 and A116V, that are associated with familial human prion diseases, did not inhibit the BACE1 cleavage of APP. To investigate whether the Val/Met129 polymorphism in human PrPC would alter the production of Aß, brains from mice with the human PrP gene with MM or VV 129 genotypes were analysed. In the MM mice there was a significant increase in Aß in the brains as compared with the VV mice. In the brains of two strains (79A and 87V) of scrapie-infected mice there was a significant increase in Aß peptides as compared to uninfected mice. Conclusions: Together these data reveal a novel function for PrP in regulating the processing of APP through inhibition of BACE1. The increase in APP processing in cells expressing disease-associated forms of PrP and in scrapie-infected brains raises the possibility that the increase in Aß may contribute to the neurodegeneration observed in prion diseases. Funded by the Medical Research Council of Great Britain.
P03.140
Prion Protein Regulates the ß-Secretase Cleavage of the Alzheimer's Amyloid Precursor Protein through Interaction with Glycosaminoglycans
Griffiths, HH; Parkin, ET; Watt, NT; Turner, AJ; Hooper, NM University of Leeds, Institute of Molecular and Cellular Biology, UK
Background: Proteolytic processing of the amyloid precursor protein (APP) by ßsecretase, BACE1, is the initial step in the production of the amyloid ß (Aß) peptide which is involved in the pathogenesis of Alzheimer's disease. We have shown that the cellular prion protein (PrP) inhibits the cleavage of APP by BACE1 in cell and animal models. Aim: To investigate the mechanism by which PrP inhibits the action of BACE1. Results: Neither PrPdeltaGPI, which is not membrane attached, nor PrP-CTM, which is anchored by a transmembrane domain and is excluded from cholesterol-rich lipid rafts, reduced cleavage of APP, suggesting that to inhibit the BACE1 cleavage of APP PrP has to be localised to lipid rafts. Coimmunoprecipitation experiments demonstrated that PrP physically interacts with BACE1. However, PrP did not alter the activity of BACE1 towards a fluorogenic peptide substrate nor perturb the dimerisation of BACE1. Using constructs of PrP lacking either the octapeptide repeats or the 4 residues KKRP at the N-terminus of the mature protein (PrPdeltaN), we demonstrate that the KKRP sequence but not the octapeptide repeats, is essential for regulating the BACE1 cleavage of APP. As the KKRP sequence is known to participate in glycosaminoglycan (GAG) binding, we confirmed that PrPdeltaN did not bind to immobilised heparin. Addition of heparin to SH-SY5Y cells increased the amount of APP cleaved by BACE1 in a concentration-dependent manner and reduced the amount of BACE1 coimmunoprecipitated with PrP, suggesting that GAGs are required for PrP to interact with BACE1 and inhibit APP processing. Of a range of GAGs, including dextran sulphate, hyaluronic acid and chondroitin sulphate, investigated there was complete correlation between those that could restore BACE1 cleavage of APP in PrP expressing cells and those that bound PrP. Conclusion: These data suggest a possible mechanism by which PrP regulates the ßcleavage of APP is through the N-terminus of PrP interacting via GAGs with one or more of the heparin binding sites on BACE1 within a subset of cholesterol-rich lipid rafts, thereby restricting access of BACE1 to APP. Funded by the Medical Research Council of Great Britain. P04.37 Comparison of the Neuropsychological Profile of Patients with Sporadic Creutzfeldt-Jakob Disease and Patients with Alzheimer's Krzovska, M1; Cepek, L1; Ratzka, P2; Döhlinger, S3; Uttner, I1; Wolf, Stefanie4; Irle, Eva4; Mollenhauer, Brit5; Kretzschmar, Hans A.6; Riepe, Matthias7; v. Arnim, Christine1; Otto, Markus1 1University of Ulm, Germany; 2Department of Neurology, Germany; 3University of Goettingen, Germany; 4University of Goettingen, Germany; 5Elena Klinik, Germany; 6LMU, Germany; 7University of Berlin, Germany Background:To evaluate the neuropsychological profile of sCJD we administered the cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog) in order to determine if and how the sCJD-Subgroups (Met/Met, Met/Val, Val/Val) have different results in the item analysis of the ADAS-cog. Furthermore, we studied how the scores differ from that of patients with Alzheimer's disease (AD). Methods:33 sCJD patients (11 with definite CJD and 22 with probable CJD) underwent neuropsychological testing with the ADAS-cog and Mini Mental State Exam (MMSE). Of these 31 were genotyped at the Codon 129 (11 Val/Val, 18 Met/Val and 2 Met/Met). The patients were matched in regards to sex and total ADAS-cog score with AD patients. The scores of the 11 ADAS-cog items were compared between the sCJD and the AD groups as well as between the sCJD-subgroups Met/Val and Val/Val and the AD group. Results:The ADAS-cog total score of the sCJD and AD groups was 22.6+/- 6.5, respectively. Regarding the single Item scores of the sCJD patient group and the AD patient group, there were statistically significant differences in the Items Constructional praxis, Word-finding difficulty in spontaneous speech and Spoken language ability. When comparing the sCJD subtypes with each other no statistically significant difference was found in the items. Conclusion: In the spee ain and constructional praxis there is indication of greater impairment in sCJD patients in general when compared with AD patients. A disturbance of the speech appears to be an important characteristic of the Met/Val and Val/Val subtypes of sCJD, and should therefore be the focus of special attention in future neuropsychological studies.
http://www.neuroprion.com/pdf_docs/conferences/prion2007/abstract_book.pdf
Tuesday, August 26, 2008
Alzheimer's Transmission of AA-amyloidosis: Similarities with Prion Disorders NEUROPRION 2007 FC4.3
http://betaamyloidcjd.blogspot.com/2008/08/alzheimers-transmission-of-aa.html
Article Posted: 04/15/2007 9:16:48 PM
Human and Animal Food Poisoning with Mad Cow a Slow Death
an editorial by Terry S. Singeltary Sr.
HUMAN AND ANIMAL FOOD POISONING WITH MAD COW DISEASEs A SLOW DEATH
WITH all the pet food deaths mounting from tainted pet food, all the suffering not only the animals are going through, but there owners as well, why are owners of these precious animals not crying about the mad cow tainted animal carcasses they poison there animals with everyday, and have been for decades, why not an uproar about that? well, let me tell you why, they don't drop dead immediately, it's a slow death, they simply call it FELINE and or CANINE ALZHEIMER'S DISEASE, DEMENTIA OR MAD CAT/DOG DISEASE i.e. FSE and they refuse to document CSE i.e.Canine Spongiform Encephalopathy, but it's there and there is some strange pathological findings on that topic that was convientantly swept under the rug. Sadly, this happens everyday with humans, once again confidently swept under the rug as Alzheimer's and or dementia i.e. fast Alzheimer's. Who wants to spend money on an autopsy on an old dog or cat? Sadly, it's the same with humans, you get old and demented your either die or your family puts you in an old folks home and forgets about you, then you die, and again, no autopsy in most cases. Imagine 4.5 annually with Alzheimer's, with and estimated 20+ million dieing a slow death by 2050, and in reality it will most likely be much higher than that now that the blood supply has been infiltrated with the TSE agent, and we now know that blood is another route and source for this hideous disease. It's hell getting old now a days.
NOW, for the ones that don't believe me, well mad cow has been in the USA for decades undetected officially, but the late Richard Marsh documented way back, again, swept under the rug. Then in 2003 in December, the first case of BSE was finally documented, by accident. Then you had the next two cases that were documented in Texas and Alabama, but it took an act of Congress, literally, to get those finally documented, and when they were finally documented, they were atypical BSE or Bovine Amyloid Spongiform Encephalopathy (BASE), which when transmitted to humans is not vCJD or nvCJD, but SPORADIC CJD. Now you might ask yourself what about that mad cow feed ban of August 4, 1997, the year my mother died from the Heidenhain Variant of Creutzfeldt Jakob Disease (confirmed), well that ruminant to ruminant was merely a regulation on paper that nobody enforced. Just last month there was 10+ PLUS MILLION POUNDS OF BANNED BLOOD TAINTED MBM DISPERSED INTO COMMERCE, and there is no way the FDA will ever recover it. It will be fed out again. 2006 was a banner year for FDA mad cow protein fed out into commerce. Looks like 2007 will be also. Our federal Government has failed us at every corner when it comes to food safety. maybe your dog, your cat, your mom, your dad, your aunt, or your uncle, but again, who cares, there old and demented, just put them down, or put them away. It's hell getting old. ...END
http://www.swnebr.net/newspaper/cgi-bin/articles/articlearchiver.pl?160273
Crushed heads (which inevitably involve brain and spinal cord material) are used to a limited extent but will also form one of the constituent raw materials of meat and bone meal, which is used extensively in pet food manufacturer...
http://collections.europarchive.org/tna/20080102163540/http://www.bseinquiry.gov.uk/files/yb/1989/03/17004001.pdf
don't think dogs can't get a TSE prion disease either ??? don't bet on it, it's already happened ;
CANINE SPONGIFORM ENCEPHALOPATHY
http://caninespongiformencephalopathy.blogspot.com/
Association between Deposition of Beta-Amyloid and Pathological Prion Protein in Sporadic Creutzfeldt-Jakob Disease
http://betaamyloidcjd.blogspot.com/2008/04/re-association-between-deposition-of.html
http://betaamyloidcjd.blogspot.com/
TSS
Alok Jha guardian.co.uk, Sunday 7 June 2009 19.11 BST
Scientists have found that harmful tangles of proteins that cause diseases such as Alzheimer's can be transmitted from one brain to another, spreading and causing damage after being injected into the brains of mice. The researchers stressed, however, that Alzheimer's was not contagious and said it could not be caught, for example, through blood transfusions.
Alzheimer's and similar neurodegenerative diseases can be caused by the build-up in the brain of tangled masses of a type of protein called tau. They destroy brain function and, when they damage large amounts of tissue, can lead to dementia.
In experiments on mice, researchers found that the tau tangles could spread in the brain, as though they were an infectious agent, and be injected in tissue from the brain of an affected mouse into the brain of a healthy one. The research is published tomorrow in the journal Nature Cell Biology, and gives scientists a much better idea of how to target therapies for neurodegenerative diseases.
Michel Goedert of the Medical Research Council's Laboratory of Molecular Biology in Cambridge, who took part in the study, said the work opened up new avenues in understanding and allowing scientists to experiment with the causes of dementia.
"This research in mice does not show that tau pathology is contagious or it can spread easily from mouse to mouse - what it has revealed is how tau tangles spread within brain tissues of individual mice," he said. "It suggests that tangles of proteins that build up in the brain to cause symptoms could have some contagious properties within brain tissue but not between mice that haven't been injected with tissue from another mouse and certainly not between people." Though they are also bits of protein, tau tangles do transmit in the same way as prions, the proteins that cause diseases such as vCJD and mad cow disease by destroying brain tissue, because they cannot be passed easily between individuals.
Rebecca Wood, chief executive of the Alzheimer's Research Trust, said: "This greater understanding of how tangles spread in Alzheimer's may lead to new ways of stopping them and defeating the disease." Abnormal tangles build up in the brain during Alzheimer's and other diseases of the brain. It's not clear how that happens - but it is clear that Alzheimer's itself is not contagious. We desperately need more research like this to find answers to dementia, a cruel condition that affects 700,000 people in the UK."
There is still much unknown about the changes in tau protein that lead to tangle formation in humans and, eventually, widespread brain cell death. But
Susanne Sorensen, head of research at the Alzheimer's Society, said: "Each new piece of knowledge helps build a better picture and takes us closer to the point where we can stop loss of brain tissue and dementia for good."
http://www.guardian.co.uk/science/2009/jun/07/alzheimers-transmission-mice-dementia-research
CJD1/9 0185
Ref: 1M51A
IN STRICT CONFIDENCE
TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
1. CMO will wish to be aware that a meeting was held at DH yesterday, 4 January, to discuss the above findings. It was chaired by Professor Murray (Chairman of the MRC Co-ordinating Committee on Research in the Spongiform Encephalopathies in Man), and attended by relevant experts in the fields of Neurology, Neuropathology, molecular biology, amyloid biochemistry, and the spongiform encephalopathies, and by representatives of the MRC and AFRC.
2. Briefly, the meeting agreed that:
i) Dr Ridley et als findings of experimental induction of p amyloid in primates were valid, interesting and a significant advance in the understanding of neurodegeneradve disorders;
ii) there were no immediate implications for the public health, and no further safeguards were thought to be necessary at present; and
iii) additional research was desirable, both epidemiological and at the molecular level. Possible avenues are being followed up by DH and the MRC, but the details will require further discussion.
93/01.05/4.1
http://collections.europarchive.org/tna/20080102191246/http://www.bseinquiry.gov.uk/files/yb/1993/01/05004001.pdf
Regarding Alzheimer's disease
(note the substantial increase on a yearly basis)
http://collections.europarchive.org/tna/20080103032314/http://www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
snip...
The pathogenesis of these diseases was compared to Alzheimer's disease at a molecular level...
snip...
http://collections.europarchive.org/tna/20080102220341/http://www.bseinquiry.gov.uk/files/yb/1990/03/12003001.pdf
And NONE of this is relevant to BSE?
There is also the matter whether the spectrum of ''prion disease'' is wider than that recognized at present.
http://collections.europarchive.org/tna/20080102223915/http://www.bseinquiry.gov.uk/files/yb/1990/07/06005001.pdf
???
http://collections.europarchive.org/tna/20080102224230/http://www.bseinquiry.gov.uk/files/yb/1990/07/09001001.pdf
BSE101/1 0136
IN CONFIDENCE
CMO
From: Dr J S Metters DCMO
4 November 1992
TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES
1. Thank you for showing me Diana Dunstan's letter. I am glad that MRC have recognised the public sensitivity of these findings and intend to report them in their proper context. This hopefully will avoid misunderstanding and possible distortion by the media to portray the results as having more greater significance than the findings so far justify.
2. Using a highly unusual route of transmission (intra-cerebral injection) the researchers have demonstrated the transmission of a pathological process from two cases one of severe Alzheimer's disease the other of Gerstmann-Straussler disease to marmosets. However they have not demonstrated the transmission of either clinical condition as the "animals were behaving normally when killed", As the report emphasises the unanswered question is whether the disease condition would have revealed itself if the marmosets had lived longer. They are planning further research to see if the conditions, as opposed to the partial pathological process, is transmissible.
What are the implications for public health?
3. The route of transmission is very specific and in the natural state of things highly unusual. However it could be argued that the results reveal a potential risk, in that brain tissue from these two patients has been shown to transmit a pathological process, Should therefore brain tissue from such cases be regarded as potentially infective? Pathologists, morticians, neuro surgeons and those assisting at neuro surgical procedures and others coming into contact with "raw" human brain tissue could in theory be at risk. However, on a priori grounds given the highly specific route of transmission in these experiments that risk must be negligible if the usual precautions for handling brain tissue are observed.
92/11.4/1.1
4. The other dimension to consider is the public reaction. To some extent the GSS case demonstrates little more than the transmission of BSE to a pig by intra-cerebral injection. If other prion diseases can be transmitted in this way it is little surprise that some pathological findings observed in GSS were also transmissible to a marmoset. But the transmission of features of Alzheimer's pathology is a different matter, given the much greater frequency of this disease and raises the unanswered question whether some cases are the result of a transmissible prion. The only tenable public line will be that "more research is required" before that hypothesis could be evaluated. The possibility on a transmissible prion remains open. In the meantime MRC needs carefully to consider the range and sequence of studies needed to follow through from the preliminary observations in these two cases. Not a particularly comfortable message, but until we know more about the causation of Alzheimer's disease the total reassurance is not practical.
J S METTERS Room 509 Richmond House Pager No: 081-884 3344 Callsign: DOH 832
92/11.4/1.2
http://collections.europarchive.org/tna/20081106170650/http://www.bseinquiry.gov.uk/files/yb/1992/11/04001001.pdf
CJD1/9 0185
Ref: 1M51A
IN STRICT CONFIDENCE
From: Dr. A Wight
Date: 5 January 1993
Copies:
Dr Metters
Dr Skinner
Dr Pickles
Dr Morris
Mr Murray
TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
1. CMO will wish to be aware that a meeting was held at DH yesterday, 4 January, to discuss the above findings. It was chaired by Professor Murray (Chairman of the MRC Co-ordinating Committee on Research in the Spongiform Encephalopathies in Man), and attended by relevant experts in the fields of Neurology, Neuropathology, molecular biology, amyloid biochemistry, and the spongiform encephalopathies, and by representatives of the MRC and AFRC.
2. Briefly, the meeting agreed that:
i) Dr Ridley et als findings of experimental induction of B amyloid in primates were valid, interesting and a significant advance in the understanding of neurodegeneradve disorders;
ii) there were no immediate implications for the public health, and no further safeguards were thought to be necessary at present; and
iii) additional research was desirable, both epidemiological and at the molecular level. Possible avenues are being followed up by DH and the MRC, but the details will require further discussion.
93/01.05/4.1
http://collections.europarchive.org/tna/20080102191246/http://www.bseinquiry.gov.uk/files/yb/1993/01/05004001.pdf
also, see the increase of Alzheimer's from 1981 to 1986
http://www.bseinquiry.gov.uk/files/yb/1988/07/08014001.pdf
Tuesday, August 26, 2008
Alzheimer's Transmission of AA-amyloidosis: Similarities with Prion Disorders NEUROPRION 2007 FC4.3
http://betaamyloidcjd.blogspot.com/2008/08/alzheimers-transmission-of-aa.html
see full text ;
http://betaamyloidcjd.blogspot.com/2009/02/harmless-prion-protein-linked-to.html
Alzheimer's and CJD
http://betaamyloidcjd.blogspot.com/
Saturday, March 22, 2008
10 Million Baby Boomers to have Alzheimer's in the coming decades 2008 Alzheimer's disease facts and figures
http://betaamyloidcjd.blogspot.com/2008/03/association-between-deposition-of-beta.html
re-Association between Deposition of Beta-Amyloid and Pathological Prion Protein in Sporadic Creutzfeldt-Jakob Disease
http://betaamyloidcjd.blogspot.com/2008/04/re-association-between-deposition-of.html
Wednesday, April 14, 2010
Food Combination and Alzheimer Disease Risk A Protective Diet
http://betaamyloidcjd.blogspot.com/2010/04/food-combination-and-alzheimer-disease.html
Wednesday, March 31, 2010
Neurobiology of Disease Molecular Cross Talk between Misfolded Proteins in Animal Models of Alzheimer's and Prion Diseases
http://betaamyloidcjd.blogspot.com/2010/03/neurobiology-of-disease-molecular-cross.html
Tuesday, August 26, 2008
Alzheimer's Transmission of AA-amyloidosis: Similarities with Prion Disorders NEUROPRION 2007 FC4.3
http://betaamyloidcjd.blogspot.com/2008/08/alzheimers-transmission-of-aa.html
P03.139
Cellular Prion Protein Regulates the ß-Secretase Cleavage of the Alzheimer's Amyloid Precursor Protein
Hooper, NM1; Parkin, ET1; Watt, NT1; Baybutt, H2; Manson, J2; Hussain, I3; Turner, AJ1 1University of Leeds, Institute of Molecular and Cellular Biology, UK; 2Roslin Institute, Neuropathogenesis Unit, UK; 3GlaxoSmithKline, Neurodegeneration Research, UK
Background: The normal cellular function of the prion protein (PrP), the causative agent of the transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease (CJD) in humans, remains enigmatic. Several studies have reported combinations of Alzheimer's Disease (AD) and CJD neuropathology and the Val/Met129 polymorphism in the PrP gene has been identified as a risk factor for early-onset AD, leading to speculation that there may be some pathogenic connection between these two neurodegenerative conditions. The amyloid ß (Aß) peptides that cause AD are derived from the amyloid precursor protein (APP) through sequential proteolytic cleavage by the ß-secretase (BACE1) and the g-secretase complex. Aim: As both APP and PrP are cleaved by zinc metalloproteases of the ADAM family, we investigated whether PrP alters the proteolytic processing of APP. Results: Here we show that expression of PrP in SH-SY5Y cells dramatically downregulated the cleavage of APP by BACE1 and reduced the secretion of Aß peptides into the conditioned medium by >92%. Conversely, siRNA reduction of endogenous PrP in N2a cells led to an increase in secreted Aß. Furthermore, levels of Aß were significantly increased in the brains of PrP null mice as compared with wild type mice. Two mutants of PrP, PG14 and A116V, that are associated with familial human prion diseases, did not inhibit the BACE1 cleavage of APP. To investigate whether the Val/Met129 polymorphism in human PrPC would alter the production of Aß, brains from mice with the human PrP gene with MM or VV 129 genotypes were analysed. In the MM mice there was a significant increase in Aß in the brains as compared with the VV mice. In the brains of two strains (79A and 87V) of scrapie-infected mice there was a significant increase in Aß peptides as compared to uninfected mice. Conclusions: Together these data reveal a novel function for PrP in regulating the processing of APP through inhibition of BACE1. The increase in APP processing in cells expressing disease-associated forms of PrP and in scrapie-infected brains raises the possibility that the increase in Aß may contribute to the neurodegeneration observed in prion diseases. Funded by the Medical Research Council of Great Britain.
P03.140
Prion Protein Regulates the ß-Secretase Cleavage of the Alzheimer's Amyloid Precursor Protein through Interaction with Glycosaminoglycans
Griffiths, HH; Parkin, ET; Watt, NT; Turner, AJ; Hooper, NM University of Leeds, Institute of Molecular and Cellular Biology, UK
Background: Proteolytic processing of the amyloid precursor protein (APP) by ßsecretase, BACE1, is the initial step in the production of the amyloid ß (Aß) peptide which is involved in the pathogenesis of Alzheimer's disease. We have shown that the cellular prion protein (PrP) inhibits the cleavage of APP by BACE1 in cell and animal models. Aim: To investigate the mechanism by which PrP inhibits the action of BACE1. Results: Neither PrPdeltaGPI, which is not membrane attached, nor PrP-CTM, which is anchored by a transmembrane domain and is excluded from cholesterol-rich lipid rafts, reduced cleavage of APP, suggesting that to inhibit the BACE1 cleavage of APP PrP has to be localised to lipid rafts. Coimmunoprecipitation experiments demonstrated that PrP physically interacts with BACE1. However, PrP did not alter the activity of BACE1 towards a fluorogenic peptide substrate nor perturb the dimerisation of BACE1. Using constructs of PrP lacking either the octapeptide repeats or the 4 residues KKRP at the N-terminus of the mature protein (PrPdeltaN), we demonstrate that the KKRP sequence but not the octapeptide repeats, is essential for regulating the BACE1 cleavage of APP. As the KKRP sequence is known to participate in glycosaminoglycan (GAG) binding, we confirmed that PrPdeltaN did not bind to immobilised heparin. Addition of heparin to SH-SY5Y cells increased the amount of APP cleaved by BACE1 in a concentration-dependent manner and reduced the amount of BACE1 coimmunoprecipitated with PrP, suggesting that GAGs are required for PrP to interact with BACE1 and inhibit APP processing. Of a range of GAGs, including dextran sulphate, hyaluronic acid and chondroitin sulphate, investigated there was complete correlation between those that could restore BACE1 cleavage of APP in PrP expressing cells and those that bound PrP. Conclusion: These data suggest a possible mechanism by which PrP regulates the ßcleavage of APP is through the N-terminus of PrP interacting via GAGs with one or more of the heparin binding sites on BACE1 within a subset of cholesterol-rich lipid rafts, thereby restricting access of BACE1 to APP. Funded by the Medical Research Council of Great Britain. P04.37 Comparison of the Neuropsychological Profile of Patients with Sporadic Creutzfeldt-Jakob Disease and Patients with Alzheimer's Krzovska, M1; Cepek, L1; Ratzka, P2; Döhlinger, S3; Uttner, I1; Wolf, Stefanie4; Irle, Eva4; Mollenhauer, Brit5; Kretzschmar, Hans A.6; Riepe, Matthias7; v. Arnim, Christine1; Otto, Markus1 1University of Ulm, Germany; 2Department of Neurology, Germany; 3University of Goettingen, Germany; 4University of Goettingen, Germany; 5Elena Klinik, Germany; 6LMU, Germany; 7University of Berlin, Germany Background:To evaluate the neuropsychological profile of sCJD we administered the cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog) in order to determine if and how the sCJD-Subgroups (Met/Met, Met/Val, Val/Val) have different results in the item analysis of the ADAS-cog. Furthermore, we studied how the scores differ from that of patients with Alzheimer's disease (AD). Methods:33 sCJD patients (11 with definite CJD and 22 with probable CJD) underwent neuropsychological testing with the ADAS-cog and Mini Mental State Exam (MMSE). Of these 31 were genotyped at the Codon 129 (11 Val/Val, 18 Met/Val and 2 Met/Met). The patients were matched in regards to sex and total ADAS-cog score with AD patients. The scores of the 11 ADAS-cog items were compared between the sCJD and the AD groups as well as between the sCJD-subgroups Met/Val and Val/Val and the AD group. Results:The ADAS-cog total score of the sCJD and AD groups was 22.6+/- 6.5, respectively. Regarding the single Item scores of the sCJD patient group and the AD patient group, there were statistically significant differences in the Items Constructional praxis, Word-finding difficulty in spontaneous speech and Spoken language ability. When comparing the sCJD subtypes with each other no statistically significant difference was found in the items. Conclusion: In the spee ain and constructional praxis there is indication of greater impairment in sCJD patients in general when compared with AD patients. A disturbance of the speech appears to be an important characteristic of the Met/Val and Val/Val subtypes of sCJD, and should therefore be the focus of special attention in future neuropsychological studies.
http://www.neuroprion.com/pdf_docs/conferences/prion2007/abstract_book.pdf
Tuesday, August 26, 2008
Alzheimer's Transmission of AA-amyloidosis: Similarities with Prion Disorders NEUROPRION 2007 FC4.3
http://betaamyloidcjd.blogspot.com/2008/08/alzheimers-transmission-of-aa.html
Article Posted: 04/15/2007 9:16:48 PM
Human and Animal Food Poisoning with Mad Cow a Slow Death
an editorial by Terry S. Singeltary Sr.
HUMAN AND ANIMAL FOOD POISONING WITH MAD COW DISEASEs A SLOW DEATH
WITH all the pet food deaths mounting from tainted pet food, all the suffering not only the animals are going through, but there owners as well, why are owners of these precious animals not crying about the mad cow tainted animal carcasses they poison there animals with everyday, and have been for decades, why not an uproar about that? well, let me tell you why, they don't drop dead immediately, it's a slow death, they simply call it FELINE and or CANINE ALZHEIMER'S DISEASE, DEMENTIA OR MAD CAT/DOG DISEASE i.e. FSE and they refuse to document CSE i.e.Canine Spongiform Encephalopathy, but it's there and there is some strange pathological findings on that topic that was convientantly swept under the rug. Sadly, this happens everyday with humans, once again confidently swept under the rug as Alzheimer's and or dementia i.e. fast Alzheimer's. Who wants to spend money on an autopsy on an old dog or cat? Sadly, it's the same with humans, you get old and demented your either die or your family puts you in an old folks home and forgets about you, then you die, and again, no autopsy in most cases. Imagine 4.5 annually with Alzheimer's, with and estimated 20+ million dieing a slow death by 2050, and in reality it will most likely be much higher than that now that the blood supply has been infiltrated with the TSE agent, and we now know that blood is another route and source for this hideous disease. It's hell getting old now a days.
NOW, for the ones that don't believe me, well mad cow has been in the USA for decades undetected officially, but the late Richard Marsh documented way back, again, swept under the rug. Then in 2003 in December, the first case of BSE was finally documented, by accident. Then you had the next two cases that were documented in Texas and Alabama, but it took an act of Congress, literally, to get those finally documented, and when they were finally documented, they were atypical BSE or Bovine Amyloid Spongiform Encephalopathy (BASE), which when transmitted to humans is not vCJD or nvCJD, but SPORADIC CJD. Now you might ask yourself what about that mad cow feed ban of August 4, 1997, the year my mother died from the Heidenhain Variant of Creutzfeldt Jakob Disease (confirmed), well that ruminant to ruminant was merely a regulation on paper that nobody enforced. Just last month there was 10+ PLUS MILLION POUNDS OF BANNED BLOOD TAINTED MBM DISPERSED INTO COMMERCE, and there is no way the FDA will ever recover it. It will be fed out again. 2006 was a banner year for FDA mad cow protein fed out into commerce. Looks like 2007 will be also. Our federal Government has failed us at every corner when it comes to food safety. maybe your dog, your cat, your mom, your dad, your aunt, or your uncle, but again, who cares, there old and demented, just put them down, or put them away. It's hell getting old. ...END
http://www.swnebr.net/newspaper/cgi-bin/articles/articlearchiver.pl?160273
Crushed heads (which inevitably involve brain and spinal cord material) are used to a limited extent but will also form one of the constituent raw materials of meat and bone meal, which is used extensively in pet food manufacturer...
http://collections.europarchive.org/tna/20080102163540/http://www.bseinquiry.gov.uk/files/yb/1989/03/17004001.pdf
don't think dogs can't get a TSE prion disease either ??? don't bet on it, it's already happened ;
CANINE SPONGIFORM ENCEPHALOPATHY
http://caninespongiformencephalopathy.blogspot.com/
Association between Deposition of Beta-Amyloid and Pathological Prion Protein in Sporadic Creutzfeldt-Jakob Disease
http://betaamyloidcjd.blogspot.com/2008/04/re-association-between-deposition-of.html
http://betaamyloidcjd.blogspot.com/
TSS
Subscribe to:
Posts (Atom)