Tuesday, June 30, 2015

PRION2015 Alzheimer’s disease

PRION2015 Alzheimer’s disease

 

*** P.34: Preliminary study of Alzheimer’s disease transmission to bank vole

 

Guido Di Donato1, Geraldina Riccardi1, Claudia D’Agostino1, Flavio Torriani1, Maurizio Pocchiari2, Romolo Nonno1, Umberto Agrimi1, and Michele Angelo Di Bari1

 

1Department of Food Safety and Veterinary Public Health Istituto Superiore di Sanit a, Rome, Italy; 2Department of Cellular Biology and Neuroscience; Istituto Superiore di Sanit a, Rome, Italy

 

Extensive experimental findings indicate that prion-like mechanisms underly the pathogenesis of Alzheimer disease (AD). Transgenic mice have been pivotal for investigating prionlike mechanisms in AD, still these models have not been able so far to recapitulate the complex clinical-pathological features of AD. Here we aimed at investigating the potential of bank vole, a wild-type rodent highly susceptible to prions, in reproducing AD pathology upon experimental inoculation.

 

Voles were intracerebrally inoculated with brain homogenate from a familial AD patient. Animals were examined for the appearance of neurological signs until the end of experiment (800 d post-inoculation, d.p.i.). Brains were studied by immunohistochemistry for pTau Prion 2015 Poster Abstracts S29 (with AT180 and PHF-1 antibodies) and b-amyloid (4G8).

 

Voles didn’t show an overt clinical signs, still most of them (11/16) were found pTau positive when culled for intercurrent disease or at the end of experiment. Interestingly, voles culled as early as 125 d.p.i. already showed pTau aggregates. Deposition of pTau was similar in all voles and was characterized by neuropil threads and coiled bodies in the alveus, and by rare neurofibrillary tangles in gray matter. Conversely, b-amyloid deposition was rather rare (2/16). Nonetheless, a single vole showed the contemporaneous presence of pTau in the alveus and a few Ab plaque-like deposits in the subiculum. Uninfected age-matched voles were negative for pTau and Ab.

 

*** These findings corroborate and extend previous evidences on the transmissibility of pTau and Ab aggregation. Furthermore, the observation of a vole with contemporaneous propagation of pTau and Ab is intriguing and deserves further studies.

 

=================

 

P.155: Quantitative real-time analysis of disease specific tau amyloid seeding activity

 

Davin Henderson and Edward Hoover Prion Research Center; College of Veterinary Medicine and Biomedical Sciences; Colorado State University; Fort Collins, CO USA

 

A leading hypothesis for the cause of neurodegenerative diseases is the templated misfolding of cellular proteins to an amyloid state. Spongiform encephalopathies were the first diseases discovered to be caused by a misfolded amyloid-rich protein. It is now recognized that the major human neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and chronic traumatic encephalopathy (CTE), also are associated with amyloid formation. Moreover, AD and PD amyloids have been shown competent to transmit disease in experimental animal models, suggesting shared mechanisms with traditional prion diseases. Sensitive detection of prion disease has been advanced by in vitro amplification of low levels of disease specific amyloid seeds, e.g. serial protein misfolding amplification (sPMCA), amyloid seeding (ASA) and real-time quaking induced conversion (RT-QuIC), thereby replicating the disease process in vitro. In addition, measurement of the amyloid formation rate can estimate the level of disease-associated seed by using methods analogous to quantitative polymerase chain reaction (qPCR). In the present work, we apply these principles to show that seeding activity of in vitro generated amyloid tau and AD brain amyloid tau can be readily detected and quantitated.

 

=============

 

P.83: Gerstmann-Str€aussler-Scheinker disease with F198S mutation: Selective propagation of PrPSc and pTau upon inoculation in bank vole

 

Michele Angelo Di Bari1, Romolo Nonno1, Laura Pirisinu1, Claudia D’Agostino1, Geraldina Riccardi1, Guido Di Donato1, Paolo Frassanito1, Bernardino Ghetti2, Pierluigi Gambetti3, and Umberto Agrimi1

 

1Department of Veterinary Public Health and Food Safety; Istituto Superiore di Sanit a; Rome, Italy;

 

2Indiana University-Purdue University Indianapolis; Department of Pathology and Laboratory Medicine; Indianapolis, IN USA; 3Case Western Reserve University; Cleveland, OH USA

 

Gerstmann-Str€aussler-Scheinker disease with F198S mutation (GSS-F198S) is characterized by the presence of PrP amyloid plaques as well as neurofibrillary tangles with abnormally-phosphorylated tau protein (pTau) in the brain. The relationship between tau protein and PrP in the pathogenesis of GSS-F198S is unknown. In a previous study, we inoculated intracerebrally 2 GSS-F198S cases in 2 lines of voles carrying either methionine (Bv109M) or isoleucine (Bv109I) at codon 109 of PrP. GSS-F198S transmitted rather efficiently to Bv109I, but not to Bv109M.

 

Here we investigated the presence of pTau, as assessed by immunohistochemistry with anti-pTau antibodies AT180 and PHF-1, in the same voles previously inoculated with GSSF198S. Among these voles, most Bv109I showed clinical signs after short survival times (»150 d.p.i.) and were positive for PrPSc. The remaining Bv109I and all Bv109M survived for longer times without showing prion-related pathology or detectable PrPSc. All Bv109I which were previously found PrPSc-positive,

 

S54 Prion 2015 Poster Abstracts

 

were immunonegative for pTau deposition. In contrast, pTau deposition was detected in 16/20 voles culled without clinical signs after long survival times (225–804 d.p.i.). pTau deposition was characterized by neuropil threads and coiled bodies in the alveus, and was similar in all voles analyzed.

 

These findings highlight that pTau from GSS-F198S can propagate in voles. Importantly, pTau propagation was independent from PrPSc, as pTau was only found in PrPSc-negative voles surviving longer than 225 d.p.i. Thus, selective transmission of PrPSc and pTau proteinopathies from GSS-F198S can be accomplished by experimental transmission in voles.

 

=========

 

=========

 

I3 Aβ Strains and Alzheimer’s Disease

 

Lary Walker Emory University, Atlanta, GA, USA

 

An essential early event in the development of Alzheimer’s disease is the misfolding and aggregation of Aβ. Enigmatically, despite the extensive deposition of human-sequence Aβ in the aging brain, nonhuman primates do not develop the full pathologic or cognitive phenotype of Alzheimer’s disease, which appears to be unique to humans. In addition, some humans with marked Aβ accumulation in the brain retain their cognitive abilities, raising the question of whether the pathogenicity of Aβ is linked to the molecular features of the misfolded protein. I will present evidence for strain-like molecular differences in aggregated Aβ between humans and nonhuman primates, and among end-stage Alzheimer patients. I will also discuss a case of Alzheimer’s disease with atypical Aβ deposition to illustrate heterogeneity in the molecular architecture of Aβ assemblies, and how this variability might influence the nature of the disease. As in the case of prion diseases, strain-like variations in the molecular architecture of Aβ could help to explain the phenotypic variability in Alzheimer’s disease, as well as the distinctively human susceptibility to the disorder.

 

This research was conducted in collaboration with Harry LeVine, Rebecca Rosen, Amarallys Cintron, David Lynn, Yury Chernoff, Anil Mehta and Mathias Jucker and colleagues. Supported by AG040589, RR165/OD11132, AG005119, NS077049, the CART Foundation and MetLife.

 

==========

 

I5 Pathogenic properties of synthetically generated prions

 

Jiyan Ma Van Andel Research Institute, Grand Rapids, Michigan, USA

 

Synthetically generating prions with bacterially expressed recombinant prion protein (recPrP) strongly supports the prion hypothesis. Yet, it remains unclear whether the pathogenic properties of synthetically generated prions (rec-Prion) fully recapitulate those of naturally occurring prions. A series of analyses including intracerebral and intraperitoneal transmissions of rec-Prion in wild-type mice were performed to determine the characteristics of rec-Prion induced diseases. Results from these analyses demonstrated that the rec-Prion exhibits the same pathogenic properties with naturally occurring prions, including a titratable infectivity that can be determined by endpoint titration assays, capability of transmitting prion disease via routes other than the direct intra-cerebral inoculation, causing ultra-structural lesions that are specific to prion disease, and sharing a similar manner of visceral dissemination and neuroinvasion with naturally occurring scrapie and chronic wasting disease. These findings confirmed that the disease caused by rec-Prion in wild-type mice is bona fide prion disease or transmissible spongiform encephalopathiges, and the rec-Prion contains similar pathogenic properties as naturally occurring prions.

 

I6 Transmissible protein toxins in neurodegenerative disease

 

Jacob Ayers, David Borchelt University of Florida, Gainesville, FL, USA

 

Amyotrophic lateral sclerosis (ALS) is an obvious example of neurodegenerative disease that seems to spread along anatomical pathways. The spread of symptoms from the site of onset (e.g. limb) to the respiratory musculature drives the rate of disease progression. In cognitive disorders, such as Alzheimer’s disease, one can find similarly find evidence of spreading dysfunction and pathology. One mechanism to account for this spread of disease from one neural structure to another is by evoking prion-like propagation of a toxic misfolded protein from cell to cell. Recent studies in animals that model aspects of Alzheimer’s Disease, Parkinson’s Disease, and Tauopathy, have bolstered the arguments in favor of prion-like, although in most of these models the mice do not develop overt “clinical” symptoms. Recently, Jacob Ayers demonstrated that the symptoms of ALS can be transmitted from a strain of mice that expresses mutant SOD1-G93A at high levels to a second transgenic strain that expresses mutant SOD1 at low, nontoxic, levels. This model showed many prion-like features including evidence of host-adaptation (earlier and more penetrant disease upon second passage). Interestingly, homogenates from paralyzed mice expressing the G37R variant of SOD1 transmitted poorly, a finding suggestive that different SOD1 variants may exhibit strain-like properties. These “ i n d u c i b l e ” m o d e l s o f h u m a n neurodegenerative disease enable the generation of models that do not require extraordinary levels of transgene expression and provide a more precise means of initiating the disease process, advances that may translate into more predictive pre-clinical models.

 

=======

 

P188 Transmission of amyloid pathology by peripheral administration of misfolded Aβ

 

Javiera Bravo-Alegria1 ,2, Rodrigo Morales2, Claudia Duran-Aniotz3, Claudio Soto2 1University of Los Andes, Santiago, Chile, 2Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School, Houston, Texas, USA, 3University of Chile, Santiago, Chile

 

Misfolding and aggregation of Amyloid-β (Aβ) is one of the primary events involved in the pathogenesis of Alzheimer's disease (AD). Recently, it has been proposed that Aβ aggregates can transmit and spread the pathology following a prion-like mechanism. Prions can be exogenously transmitted by many different routes of administration. In the case of Aβ, previous studies showed that intraperitoneal (i.p.) injection of seeds can accelerate cerebral amyloidosis in mouse models. However, other potential routes have not yet been studied. The goal of this work was to assess whether Aβ amyloidosis can be seeded in the brain of a transgenic mouse model of AD by peripheral administration of misfolded particles.

 

Young tg2576 animals (50 days old) were inoculated with a pool of brain extract coming from old Tg2576 animals (10%w/v) by different routes: i.p. (100μL), eye drops (5μL each eye, 3 times), intramuscular (i.m., 50μL), and per os (p.o., 1000μL). Animals were sacrificed at 300 days old, and brain samples were analyzed for amyloid pathology by IHC and ELISA.

 

The i.p., i.m., and eye drops administration of Aβ seeds significantly accelerated pathological features in tg2576. Regardless of the higher volume administered, p.o. treated animals did not show any pathological changes when compared to untreated controls. Differences in the proportion of diffuse, core and vascular deposition was observed within experimental groups. Our data show that peripheral administration of Aβ seeds could accelerate pathological changes in the brain and suggest that an orchestrated cross-talk between the brain and peripheral tissues occurs in AD.

 

==========

 


 


 

Self-Propagative Replication of Ab Oligomers Suggests Potential Transmissibility in Alzheimer Disease

 

Received July 24, 2014; Accepted September 16, 2014; Published November 3, 2014

 


 

*** Singeltary comment ;

 


 

TSS

visual variant of Alzheimer’s disease VVAD vs Heidenhain Variant Creutzfeldt Jakob Disease hvCJD

Subject: visual variant of Alzheimer’s disease VVAD vs Heidenhain Variant Creutzfeldt Jakob Disease hvCJD

 

Research article

 

Visual signs and symptoms in patients with the visual variant of Alzheimer disease

 

Pierre-François Kaeser1, Joseph Ghika2 and François-Xavier Borruat1*

 

* Corresponding author: François-Xavier Borruat francois.borruat@fa2.ch

 

Author Affiliations

 

1 Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Avenue de France 15, Lausanne, CH-1004, Switzerland

 

2 Department of Neurology, University of Lausanne, CHUV, Lausanne, Switzerland

 

For all author emails, please log on.

 

BMC Ophthalmology 2015, 15:65 doi:10.1186/s12886-015-0060-9

 

The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1471-2415/15/65

 

Received: 11 July 2014 Accepted: 19 June 2015 Published: 30 June 2015

 

© 2015 Kaeser et al.

 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

 

Abstract Background

 

Prominent visual symptoms can present in the visual variant of Alzheimer’s disease (VVAD). Ophthalmologists have a significant role to play in the early diagnosis of VVAD.

 

Methods

 

We retrospectively reviewed the files of ten consecutive patients diagnosed with VVAD. All patients had a full neuro-ophthalmologic examination, a formal neurological and neuro-psychological testing, and cerebral MRI to confirm diagnosis. In addition, functional neuroimaging was obtained in seven patients.

 

Results

 

The common primary symptom at presentation with all patients was difficulty with near vision (reading difficulty n = 8, “visual blur” in near vision n = 2), and difficulty writing (n = 3). Following assessment, impaired reading and writing skills were evident in 9/10 and 8/10 patients respectively. Median distance visual acuity was 20/25 and at near the median visual acuity was J6. Partial homonymous visual field defect was detected in 80 % (8/10) of the patients. Color vision was impaired in all patients when tested with Ishihara pseudoisochromatic plates, but simple color naming was normal in 8/9 tested patients. Simultanagnosia was present in 8/10 patients. Vision dysfunction corresponded with cerebral MRI findings where parieto-occipital cortical atrophy was observed in all patients. PET scan (5 patients) or SPECT (2 patients) revealed parieto-occipital dysfunction (hypometabolism or hypoperfusion) in all 7 tested patients

 

Conclusions

 

Visual difficulties are prominent in VVAD. Dyslexia, incomplete homonymous hemianopia, preserved color identification with abnormal color vision on Ishihara, and simultanagnosia were all symptoms observed frequently in this patient series. Ophthalmologists should be aware of the possibility of neurodegenerative disorders such as VVAD in patients with unexplained visual complaints, in particular reading difficulties.

 

Keywords: Alzheimer; Reading difficulty; Homonymous hemianopsia; Simultanagnosia

 


 

Journal of Neuro-Ophthalmology: March 2014 - Volume 34 - Issue 1 - p 4–9 doi: 10.1097/WNO.0b013e3182916155

 

Original Contribution

 

The Heidenhain Variant of Creutzfeldt-Jakob Disease—A Case Series

 

Parker, Sarah E. MD; Gujrati, Meena MD; Pula, John H. MD; Zallek, Sarah N. MD; Kattah, Jorge C. MD

 

Supplemental Author Material Collapse Box Abstract Background: To study the neuro-ophthalmologic characteristics of patients with the visual variant of Creuztfeldt-Jakob disease (CJD) predominantly affecting the occipital and parietal lobes, known as the Heidenhain variant (HvCJD). The initial symptoms and findings may overlap with other posterior cerebral degenerative disorders. We reviewed our experience with HvCJD including clinical course and results of neuroimaging, electroencephalography (EEG), and cerebrospinal fluid (CSF) studies. Neuropathological postmortem findings were reviewed when available to confirm the clinical impression.

 

Methods: Retrospective study of HvCJD patients examined in the past 15 years at a single tertiary referral university hospital. Rapid rate of visual and neurological deterioration and abnormal diffusion-weighted imaging (DWI) were characteristic for HvCJD.

 

Results: Three patients displayed abnormalities in DWI, EEG, and CSF and had rapid clinical progression, leading to a clinical diagnosis of HvCJD. None underwent diagnostic cerebral biopsy. In 2 patients, the diagnosis of sporadic CJD was confirmed by postmortem neuropathologic, immunohistochemical, and genetic studies.

 

Conclusions: The gold standard for establishing the diagnosis of HvCJD is based on the characteristic histopathologic findings and molecular confirmation. Concern with potential iatrogenic CJD, related to surgical instrumentation or operating room prion contamination, has limited the availability of confirmatory brain biopsy. Our case series illustrates how the combination of clinical neuroimaging and EEG studies and 14:3:3 protein and other neuronal protein marker levels can lead to the diagnosis of HvCJD. Immunohistochemical analysis and genetic testing at a specialized prion research center will assist in identifying the sporadic variant and genetic forms of CJD.

 

© 2014 by North American Neuro-Ophthalmology Society

 

SNIP...

 

DISCUSSION

 

In 1998, Benson et al (11) described PCD as an unusual neurodegenerative disorder involving the posterior parietal and occipital lobes. Neuropathologic findings in PCD include senile plaques and neurofibrillary tangles, typical for Alzheimer disease in the majority of cases (7–9). Less frequently, subcortical gliosis as a variant of Pick disease and spongiform changes, neuronal loss and gliosis due to prion infection were reported (9). However, epidemiologic data are lacking. Clinical findings in PCD and HvCJD include combinations of visual field defects, cortical blindness, dyschromatopsia, visual agnosia, alexia, prosopagnosia, palinopsia, optical anosognosia, Balint and Gertsmann syndrome (12–16). Between 1998 and 2012, we evaluated 10 patients with PCD; 3 had sporadic HvCJD who were followed until their death. We are uncertain about the etiology in the remaining 7 patients who developed either a slowly progressive dementia (evolving over several years) and are still alive or were lost to follow-up. The largest published series of the HvCJD included 34 pathologically confirmed cases over a 51-month period (6). This study from the University of Göttingen in Germany is the geographic base of the “German National Creutzfeldt-Jakob Disease Surveillance Study.” Clinical findings were available in 25 cases and consisted of a combination of visual loss and higher visual deficits as found in previous studies. The rate of neurological deterioration was faster in the HvCJD group compared with other CJD variants and did not correlate with location or extent of neuropathologic findings. Homozygosis for methionine in codon 129, identified in 2 of our patients, was noted as a possible genetic indicator of an aggressive clinical course. We evaluated our patients by applying the diagnostic criteria used by Kropp et al (6) and endorsed by the World Health Organization (Table 1). Neuroimaging findings showed subtle increased intensity in the parieto-occipital region on T2 and FLAIR images only in case 2. Yet all 3 patients had striking visual deficits on examination. Therefore, HvCJD should be considered in any patient with visual field loss and a normal MRI or when imaging abnormalities fail to explain the clinical findings (15). Our imaging protocol included diffusion-weighted imaging (DWI) sequences (12,16). Restricted diffusion involving the gyri of the parieto-occipital cortex was observed in 2 of our cases (Fig. 3). The third patient (Case 2) was evaluated before the incorporation of DWI sequences in the MRI protocol at our institution. DWI was the most helpful ancillary test supporting the diagnosis of HvCJD, and to our knowledge, other PCD variants usually are not associated with DWI changes. Graphic Table 1

 

Initial EEG results showed nonspecific focal or generalized slowing, but follow-up EEG showed periodic sharp waves (Fig. 2) characteristic of CJD in later stages, correlating with the presence of myoclonus. SPECT scanning confirmed occipital hypoperfusion in one of our cases and should be part of PCD evaluation. SPECT largely has been replaced by PET that demonstrates focal cerebral hypometabolism in PCD (13,17). An important characteristic observation suggesting HvCJD in our patients was rapid clinical deterioration. The initial HvCJD diagnosis in Case 1 was supported by progressive neurological deterioration over 10 weeks after the onset of visual symptoms. Our other 2 patients were evaluated at an earlier stage of disease and were scheduled for additional testing over several days. Both patients failed to keep their 2-week follow-up appointments, and contact with their families revealed that they experienced rapid neurological deterioration with inability to perform activities of daily living. This prompted us to perform house calls to complete neurological evaluation and discussion with the family. Markers of massive neuronal loss (14:3:3 protein and neuronal-specific enolase) were elevated in 2 of our cases. These markers are deemed highly specific and sensitive (1). Their value must be interpreted with caution in individual cases, as increased neuronal protein levels (false positives) may be found in other rapidly progressive dementias and potential PCD mimics including autoimmune and paraneoplastic encephalitis, nonconvulsive status epilepticus, intravascular lymphoma, and vasculitis (2,5). Although characteristic histopathology of CJD remains the gold standard in establishing the diagnosis, the risk of instrument or surgical suite prion contamination during brain biopsy has limited the availability of brain biopsy (10). Until a specific serum or CSF prion marker is available, the premortem diagnosis of HvCJD in a patient with PCD continues to rely on close clinical monitoring, neuroimaging testing, serial EEG, and elevated CSF markers (18,19). We strongly recommend that specimens be sent to the National Prion Research Center at Case Western Reserve University in Cleveland, OH, and similar prion research centers for confirmatory, cerebral histopathology, immunohistochemical staining of abnormal protease-resistant prion protein, and genetic testing. This testing protocol establishes the diagnosis of sporadic, variant, and genetic forms of CJD and hopefully will prevent delay in establishing the correct diagnosis (20). In vitro, anti-prion agents have been found effective in controlling prion growth and progression. Unfortunately, these agents have failed to cure or slow CJD infection in humans (21–23).

 


 

P07 Behavioral Neurology: Aging and Dementia MRI More Useful Than PET for Diagnosis of Heidenhain Variant Creutzfeldt-Jacob Disease (P07.163)

 

Jonathan Beary1 and Edward Manno2 1 General Neurology, Neurological Institute Cleveland Clinic Cleveland OH 2 Cerebrovascular Neurology, Neurological Institute Cleveland Clinic Cleveland OH

 

OBJECTIVE: To demonstrate that MRI detection of subtle focal cortical abnormalities can prove more useful than positron emission tomography (PET) in the diagnosis of Heidenhain variant Creutzfeldt-Jakob Disease (hvCJD).

 

BACKGROUND: hvCJD is a rare neurodegenerative, spongiform encephalopathy with an aggressive clinical course. PET brain imaging has been reported to detect focal cortical abnormalities in hvCJD with greater sensitivity than MRI. However, because PET is both more costly and less accessable than MRI, early diagnosis of this disease and subsequent prognostication may be unnecessarily delayed. The reliability of MRI over PET in detecting isolated occipital cortical changes suggestive of hvCJD has not been well studied.

 

DESIGN/METHODS: This is a case report with relevent neuroimaging review.

 

RESULTS: A 70 year-old right-handed male experienced visual hallucinations and visuospatial disorientation with worsening ataxia followed by progressive anterograde amnesia and cortical blindness. Six weeks later he was comatose with startle myoclonus. A sharply-contoured periodic pattern was evident posteriorly on continuous EEG monitoring with brain MRI revealing subtle bilateral occipital cortical diffusion restriction. PET brain imaging showed diffuse non-focal cortical hypometabolism. Both cerebrospinal fluid (CSF) 14-3-3 and tau protein studies were positive. EEG progressed to refractory status epilepticus and the patient died four days later. ***The presence of abnormal brain protease-resistant prion protein and MM1 genotype at autopsy supported the diagnosis of hvCJD.

 

CONCLUSIONS: hvCJD should be considered in patients with rapid-onset idiopathic visual disturbance and dementia. When combined with EEG and CSF analysis, isolated MRI visual cortex diffusion restriction is suggestive of this ultra-aggressive prion variant. MRI is able to efficiently facilitate valuable prognostication early in hvCJD and can be more useful than costly PET imaging.

 

Disclosure: Dr. Beary has nothing to disclose. Dr. Manno has nothing to disclose.

 


 

Resident and Fellow Section

 

Mystery Case:

 

Heidenhain variant of Creutzfeldt-Jakob disease

 

Matthew Kalp, MD, PhD and Christopher H. Gottschalk, MD

 

A 75-year-old woman complained of a “scrambled brain” for 1 month. She endorsed poor depth perception and an inability to construct “mental maps” of her home and the grocery store. Examination revealed impaired delayed recall, ocular apraxia, optic ataxia, and simultanagnosia (Bálint syndrome). Diffusion-weighted MRI demonstrated cortical hyperintensities in the occipital lobes extending into the right parietal lobe, suggesting spongiform encephalopathy (figure). The 14-3-3 protein and elevated neuron-specific enolase were detected in the CSF. The patient was diagnosed with the Heidenhain variant of Creutzfeldt-Jakob disease.1 Early in the disease, this subgroup of patients with prion disease have isolated visual, not cognitive, symptoms and may be referred to an ophthalmologist.2

 

© 2014 American Academy of Neurology

 


 

Heidenhain Variant Creutzfeldt Jakob Disease autopsy case report 'MOM'

 

DIVISION OF NEUROPATHOLOGY University of Texas Medical Branch 114 McCullough Bldg. Galveston, Texas 77555-0785

 

FAX COVER SHEET

 

DATE: 4-23-98

 

TO: Mr. Terry Singeltary @ -------

 

FROM: Gerald Campbell

 

FAX: (409) 772-5315 PHONE: (409) 772-2881

 

Number of Pages (including cover sheet):

 

Message:

 

*CONFIDENTIALITY NOTICE*

 



Saturday, June 27, 2015

 

A Naturally Occurring Bovine Tauopathy Is Geographically Widespread in the UK

 

Research Article

 


 

Singeltary Comment;

 

IBNC Tauopathy or TSE Prion disease, it appears, no one is sure

 

Posted by flounder on 27 Jun 2015 at 16:29 GMT

 


 


 

Thursday, January 2, 2014

 

CWD TSE Prion in cervids to hTGmice, Heidenhain Variant Creutzfeldt-Jacob Disease MM1 genotype, and iatrogenic CJD ???

 

 
 
 
kind regards, terry