Thursday, February 26, 2009

'Harmless' prion protein linked to Alzheimer's disease Non-infectious form of prion protein could cause brain degeneration

Published online 25 February 2009 Nature doi:10.1038/news.2009.121


'Harmless' prion protein linked to Alzheimer's disease Non-infectious form of prion protein could cause brain degeneration.

Heidi Ledford

Prion proteins may react with amyloid-ß peptides inside the brain cells of Alzheimer's patients.Thomas Deerinck NCMIR/Science Photo LibraryNon-infectious prion proteins found in the brain may contribute to Alzheimer's disease, researchers have found.

The surprising new results, reported this week in Nature1, show that normal prion proteins produced naturally in the brain interact with the amyloid-ß peptides that are hallmarks of Alzheimer's disease. Blocking this interaction in preparations made from mouse brains halted some neurological defects caused by the accumulation of amyloid-ß peptide. It was previously thought that only infectious prion proteins, rather than their normal, non-infectious counterparts, played a role in brain degeneration.

The results have yet to be confirmed in humans, but suggest that targeting the non-infectious prion protein (PrPc) could provide an alternative route to treating Alzheimer's disease. "The need is huge," says Paul Aisen, an Alzheimer's researcher based at the neurosciences department of the University of California, San Diego. "And it's great news for the field when a new idea is brought forth with strong evidence that can lead to new therapeutic strategies."

Proteins misbehaving Alzheimer's disease has long been linked to the build-up of amyloid-ß peptides, first into relatively short chains known as oligomers, and then eventually into the long, sticky fibrils that form plaques in the brain. The oligomeric form of the peptide is thought to be toxic, but exactly how it acts in the brain is unknown.

Stephen Strittmatter and his colleagues at Yale University in New Haven, Connecticut searched for brain cell proteins that interact with amyloid-ß oligomers. To their surprise, they found PrPc, the normal, non-infectious prion protein.

Normal prion proteins are produced naturally in the brain, but can cause disease when they come into contact with an infectious form of the protein (PrPSc) that folds into an unusual conformation. These infectious prions convert innocuous prion proteins into the infectious form, which forms clumps and leads to neurodegenerative diseases, such as variant Creutzfeldt-Jakob disease, the human form of mad cow disease.

Strittmatter's team found that in brain slices taken from mice that were engineered to lack the prion protein, amyloid-ß did not cause defects in a process called long-term potentiation, which is important for long-term memory formation. Similarly, using an antibody to block the prion protein also prevented damage caused by the errant amyloid-ß peptides.

Therapeutic potential Researchers have struggled to determine what prion proteins normally do in the brain. Mice that lack the protein appear largely normal, with possible minor deficits in the generation of new neurons and responses to stress. A recent study found evidence that the prion protein may also be necessary for mice to have a normal sense of smell2.

Nevertheless, the results in mice suggest that blocking the protein may have unwanted side-effects, says Lennart Mucke, a neurologist at the Gladstone Institute of Neurological Disease in San Francisco, California. Although some are already at work to develop drugs that target the prion protein, these programmes target the infectious form of the protein and may not be useful in warding off Alzheimer's disease.

But Strittmatter and his colleagues mapped the region of the prion protein that interacts with amyloid-ß, giving researchers a clear target in the search for inhibitors of this interaction. Mucke, meanwhile, points out that an enzyme called a-secretase can cleave the prion protein at a site that would prevent it from binding to amyloid-ß. This same enzyme can also cleave amyloid-ß itself, meaning that enhancing that enzyme's activity could yield two strikes against Alzheimer's disease.

Although more work needs to be done to confirm the results in animal and human studies, Aisen says Alzheimer's disease researchers will welcome a new target in the fight against the frustrating disease. Clinical trials are underway to test drugs that aim to reduce the levels of amyloid-ß in the brain, but researchers are pessimistic about ever driving amyloid-ß levels down to zero. Meanwhile, treatments already on the market target symptoms of the disease, and not it's underlying cause.

"The treatments we have for Alzheimer's disease today are symptomatic and entirely inadequate," says Aisen. "There's no question that we need treatments that target the mechanisms behind neurodegeneration in Alzheimer's disease."

References Lauren, J. et al. Nature 457, 1128-1132 (2009). Le Pichon, C. E. et al. Nature Neuroscience 12, 60-69 (2008). Article PubMed ChemPort

Link found between Alzheimer's, mad cow protein Bernadette Tansey, Chronicle Staff Writer

Thursday, February 26, 2009

(02-25) 19:56 PST -- The latest in a recent flurry of clues on the workings of Alzheimer's disease comes from Yale University researchers who found a link between the disorder and the prion protein, which can cause mad cow disease and other maladies.

The Yale team found that the prion protein, whose normal function is to maintain brain health, may contribute to nerve damage if it becomes entangled with a protein fragment that scientists consider a chief suspect as a cause for Alzheimer's disease.

That suspect fragment, the amyloid beta peptide, builds up in the gluey plaques in the brain that are a characteristic sign of Alzheimer's, a progressive neurodegenerative disease. The amyloid peptide seems to stick to the prion protein, block its benign effects and interfere with learning and memory, the Yale group said in a paper published Wednesday in the journal Nature.

'Very tantalizing' "It's very tantalizing," said Dr. Lennart Mucke, director of the Gladstone Institute of Neurological Disease, who wrote a commentary on the Yale theory in the same issue. Mucke is part of a robust community of Bay Area scientists who are trying to ferret out the root causes of Alzheimer's disease and develop new medicines.

The prion work adds to a spate of new leads produced at the Gladstone Institute at UCSF's Mission Bay campus, the Buck Institute for Age Research in Novato, South San Francisco biotechnology leader Genentech Inc. and other research teams.

The study by Dr. Stephen Strittmatter and his Yale colleagues raises the possibility of a link between Alzheimer's and the family of prion diseases that includes mad cow disease and a related human neurodegenerative illness called Creutzfeldt-Jakob disease. But the evidence so far shows no sign that Alzheimer's disease involves a prion protein with the deformed structure seen in mad cow and Creutzfeldt-Jakob disease. Such misfolded prions can arise from genetic mutations or can be carried into the body by infectious particles from tainted meat.

Mucke said that the prion protein, if it is involved in Alzheimer's, is probably in its normal form. There's no evidence that the disease somehow releases infectious prions. "I don't believe it's communicable," he said.

Other new theories The prion study does not contradict other new theories about Alzheimer's, which all suggest fresh potential mechanisms by which the amyloid peptide or its parent, a protein called APP, may wreak destruction on the brain, said Dr. Dale Bredesen of the Buck Institute. Each theory opens potential new avenues to experimental therapies, he said. So far, much of the drug discovery in Alzheimer's has been focused on simply clearing the amyloid peptide and its plaques from the brain, on the theory that they cause broad physical or chemical damage, Bredesen said. But new work shows that APP and the amyloid peptide are involved in sensitive signaling networks that can go awry and destroy healthy nerves.

"I think we're seeing a fundamental switch in the view of the disease," he said. Recent failures of experimental drugs aimed at the amyloid peptide alone suggest that additional tactics are needed, he said. "Amyloid beta was the tip of the iceberg, but there's more."

Bredesen has his own overarching theory. He sees APP as a molecular switch on the nerves that flips between health and destruction. The protein can split up into three parts that each nourish the nerve. Or it can fracture differently into four parts that each attack the nerve - and one of those destructive four is the amyloid peptide, he said.

Search for a therapy In the search for a possible therapy for Alzheimer's, Bredesen is focusing on a molecule that seems to block the destruction switch. The nerve growth factor netrin-1 appears to curb the release of the amyloid peptide from APP, he said. Work is under way on methods to deliver netrin-1 to people with early signs of Alzheimer's, but it could take five years to produce an approved drug, he said.

Mucke said the Gladstone Institute is working on an array of strategies, which include preventing the amyloid peptide from finding molecules that pass along its destructive signals.

Scientists are starting to see Alzheimer's as a complex disease like cancer or hypertension, which can arise from various root causes. That means patients may need a cocktail of several drugs, and maybe a custom-made mix for each individual.

"I'm absolutely convinced that different people get Alzheimer's for different reasons, and drug development will have to take that into account," Mucke said.

E-mail Bernadette Tansey at mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000117/!

> Mucke said that the prion protein, if it is involved in Alzheimer's, is probably in its normal form. There's no evidence

> that the disease somehow releases infectious prions. "I don't believe it's communicable," he said.


LOT of if's, probably's, and don't believe's still. BUT let's take a closer look at the old science i.e. transmission studies ;



Regarding Alzheimer's disease

(note the substantial increase on a yearly basis)


The pathogenesis of these diseases was compared to Alzheimer's disease at a molecular level...


And NONE of this is relevant to BSE?

There is also the matter whether the spectrum of ''prion disease'' is wider than that recognized at present.

Human BSE


These are not relevant to any possible human hazard from BSE nor to the much more common dementia, Alzheimers.


CJD1/9 0185

Ref: 1M51A


Dr McGovern From: Dr A Wight

Date: 5 January 1993

Copies: Dr Metters

Dr Skinner

Dr Pickles

Dr Morris

Mr Murray


1. CMO will wish to be aware that a meeting was held at DH yesterday, 4 January, to discuss the above findings. It was chaired by Professor Murray (Chairman of the MRC Co-ordinating Committee on Research in the Spongiform Encephalopathies in Man), and attended by relevant experts in the fields of Neurology, Neuropathology, molecular biology, amyloid biochemistry, and the spongiform encephalopathies, and by representatives of the MRC and AFRC.

2. Briefly, the meeting agreed that:

i) Dr Ridley et als findings of experimental induction of p amyloid in primates were valid, interesting and a significant advance in the understanding of neurodegeneradve disorders;

ii) there were no immediate implications for the public health, and no further safeguards were thought to be necessary at present; and

iii) additional research was desirable, both epidemiological and at the molecular level. Possible avenues are being followed up by DH and the MRC, but the details will require further discussion.


BSE101/1 0136


5 NOV 1992

CMO From: Dr J S Metters DCMO 4 November 1992


1. Thank you for showing me Diana Dunstan's letter. I am glad that MRC have recognised the public sensitivity of these findings and intend to report them in their proper context. This hopefully will avoid misunderstanding and possible distortion by the media to portray the results as having more greater significance than the findings so far justify.

2. Using a highly unusual route of transmission (intra-cerebral injection) the researchers have demonstrated the transmission of a pathological process from two cases one of severe Alzheimer's disease the other of Gerstmann-Straussler disease to marmosets. However they have not demonstrated the transmission of either clinical condition as the "animals were behaving normally when killed'. As the report emphasises the unanswered question is whether the disease condition would have revealed itself if the marmosets had lived longer. They are planning funher research to sec if the conditions, as opposed to the partial pathological process, is transmissible.

What are the implications for public health?

3. . The route of transmission is very specific and in the natural state of things highly unusual. However it could be argued that the results reveal a potential risk, in that brain tissue from these two patients has been shown to transmit a pathological process. Should therefore brain tissue from such cases be regarded as potentially infective? Pathologists, morticians, neuro surgeons and those assisting at neuro surgical procedures and others coming into contact with "raw" human brain tissue could in theory be at risk. However, on a priori grounds given the highly specific route of transmission in these experiments that risk must be negligible if the usual precautions for handling brain tissue are observed.


BSE101/1 0137

4. The other dimension to consider is the public reaction. To some extent the GSS case demonstrates little more than the transmission of BSE to a pig by intra-cerebral injection. If other prion diseases can be transmitted in this way it is little surprise that some pathological findings observed m GSS were also transmissible to a marmoset. But the transmission of features of Alzheimer's pathology is a different matter, given the much greater frequency of this disease and raises the unanswered question whether some cases are the result of a transmissible prion. The only tenable public line will be that "more research is required" before that hypothesis could be evaluated. The possibility on a transmissible prion remains open. In the meantime MRC needs carefully to consider the range and sequence of studies needed to follow through from the preliminary observations in these two cases. Not a particularly comfortable message, but until we know more about the causation of Alzheimer's disease the total reassurance is not practical.

JS METTERS Room 509 Richmond House Pager No: 081-884 3344 Callsign: DOH 832



also, see the increase of Alzheimer's from 1981 to 1986



Tuesday, August 26, 2008

Alzheimer's Transmission of AA-amyloidosis: Similarities with Prion Disorders NEUROPRION 2007 FC4.3

P03.139 Cellular Prion Protein Regulates the ß-Secretase Cleavage of the Alzheimer’s Amyloid Precursor Protein

Hooper, NM1; Parkin, ET1; Watt, NT1; Baybutt, H2; Manson, J2; Hussain, I3; Turner, AJ1 1University of Leeds, Institute of Molecular and Cellular Biology, UK; 2Roslin Institute, Neuropathogenesis Unit, UK; 3GlaxoSmithKline, Neurodegeneration Research, UK

Background: The normal cellular function of the prion protein (PrP), the causative agent of the transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease (CJD) in humans, remains enigmatic. Several studies have reported combinations of Alzheimer’s Disease (AD) and CJD neuropathology and the Val/Met129 polymorphism in the PrP gene has been identified as a risk factor for early-onset AD, leading to speculation that there may be some pathogenic connection between these two neurodegenerative conditions. The amyloid ß (Aß) peptides that cause AD are derived from the amyloid precursor protein (APP) through sequential proteolytic cleavage by the ß-secretase (BACE1) and the g-secretase complex. Aim: As both APP and PrP are cleaved by zinc metalloproteases of the ADAM family, we investigated whether PrP alters the proteolytic processing of APP. Results: Here we show that expression of PrP in SH-SY5Y cells dramatically downregulated the cleavage of APP by BACE1 and reduced the secretion of Aß peptides into the conditioned medium by >92%. Conversely, siRNA reduction of endogenous PrP in N2a cells led to an increase in secreted Aß. Furthermore, levels of Aß were significantly increased in the brains of PrP null mice as compared with wild type mice. Two mutants of PrP, PG14 and A116V, that are associated with familial human prion diseases, did not inhibit the BACE1 cleavage of APP. To investigate whether the Val/Met129 polymorphism in human PrPC would alter the production of Aß, brains from mice with the human PrP gene with MM or VV 129 genotypes were analysed. In the MM mice there was a significant increase in Aß in the brains as compared with the VV mice. In the brains of two strains (79A and 87V) of scrapie-infected mice there was a significant increase in Aß peptides as compared to uninfected mice. Conclusions: Together these data reveal a novel function for PrP in regulating the processing of APP through inhibition of BACE1. The increase in APP processing in cells expressing disease-associated forms of PrP and in scrapie-infected brains raises the possibility that the increase in Aß may contribute to the neurodegeneration observed in prion diseases. Funded by the Medical Research Council of Great Britain.

P03.140 Prion Protein Regulates the ß-Secretase Cleavage of the Alzheimer’s Amyloid Precursor Protein through Interaction with Glycosaminoglycans

Griffiths, HH; Parkin, ET; Watt, NT; Turner, AJ; Hooper, NM University of Leeds, Institute of Molecular and Cellular Biology, UK

Background: Proteolytic processing of the amyloid precursor protein (APP) by ßsecretase, BACE1, is the initial step in the production of the amyloid ß (Aß) peptide which is involved in the pathogenesis of Alzheimer’s disease. We have shown that the cellular prion protein (PrP) inhibits the cleavage of APP by BACE1 in cell and animal models. Aim: To investigate the mechanism by which PrP inhibits the action of BACE1. Results: Neither PrPdeltaGPI, which is not membrane attached, nor PrP-CTM, which is anchored by a transmembrane domain and is excluded from cholesterol-rich lipid rafts, reduced cleavage of APP, suggesting that to inhibit the BACE1 cleavage of APP PrP has to be localised to lipid rafts. Coimmunoprecipitation experiments demonstrated that PrP physically interacts with BACE1. However, PrP did not alter the activity of BACE1 towards a fluorogenic peptide substrate nor perturb the dimerisation of BACE1. Using constructs of PrP lacking either the octapeptide repeats or the 4 residues KKRP at the N-terminus of the mature protein (PrPdeltaN), we demonstrate that the KKRP sequence but not the octapeptide repeats, is essential for regulating the BACE1 cleavage of APP. As the KKRP sequence is known to participate in glycosaminoglycan (GAG) binding, we confirmed that PrPdeltaN did not bind to immobilised heparin. Addition of heparin to SH-SY5Y cells increased the amount of APP cleaved by BACE1 in a concentration-dependent manner and reduced the amount of BACE1 coimmunoprecipitated with PrP, suggesting that GAGs are required for PrP to interact with BACE1 and inhibit APP processing. Of a range of GAGs, including dextran sulphate, hyaluronic acid and chondroitin sulphate, investigated there was complete correlation between those that could restore BACE1 cleavage of APP in PrP expressing cells and those that bound PrP. Conclusion: These data suggest a possible mechanism by which PrP regulates the ßcleavage of APP is through the N-terminus of PrP interacting via GAGs with one or more of the heparin binding sites on BACE1 within a subset of cholesterol-rich lipid rafts, thereby restricting access of BACE1 to APP. Funded by the Medical Research Council of Great Britain. P04.37 Comparison of the Neuropsychological Profile of Patients with Sporadic Creutzfeldt-Jakob Disease and Patients with Alzheimer’s Krzovska, M1; Cepek, L1; Ratzka, P2; Döhlinger, S3; Uttner, I1; Wolf, Stefanie4; Irle, Eva4; Mollenhauer, Brit5; Kretzschmar, Hans A.6; Riepe, Matthias7; v. Arnim, Christine1; Otto, Markus1 1University of Ulm, Germany; 2Department of Neurology, Germany; 3University of Goettingen, Germany; 4University of Goettingen, Germany; 5Elena Klinik, Germany; 6LMU, Germany; 7University of Berlin, Germany Background:To evaluate the neuropsychological profile of sCJD we administered the cognitive subscale of the Alzheimer’s Disease Assessment Scale (ADAS-cog) in order to determine if and how the sCJD-Subgroups (Met/Met, Met/Val, Val/Val) have different results in the item analysis of the ADAS-cog. Furthermore, we studied how the scores differ from that of patients with Alzheimer’s disease (AD). Methods:33 sCJD patients (11 with definite CJD and 22 with probable CJD) underwent neuropsychological testing with the ADAS-cog and Mini Mental State Exam (MMSE). Of these 31 were genotyped at the Codon 129 (11 Val/Val, 18 Met/Val and 2 Met/Met). The patients were matched in regards to sex and total ADAS-cog score with AD patients. The scores of the 11 ADAS-cog items were compared between the sCJD and the AD groups as well as between the sCJD-subgroups Met/Val and Val/Val and the AD group. Results:The ADAS-cog total score of the sCJD and AD groups was 22.6+/- 6.5, respectively. Regarding the single Item scores of the sCJD patient group and the AD patient group, there were statistically significant differences in the Items Constructional praxis, Word-finding difficulty in spontaneous speech and Spoken language ability. When comparing the sCJD subtypes with each other no statistically significant difference was found in the items. Conclusion: In the spee h domain and constructional praxis there is indication of greater impairment in sCJD patients in general when compared with AD patients. A disturbance of the speech appears to be an important characteristic of the Met/Val and Val/Val subtypes of sCJD, and should therefore be the focus of special attention in future neuropsychological studies.

Tuesday, August 26, 2008 Alzheimer's Transmission of AA-amyloidosis: Similarities with Prion Disorders NEUROPRION 2007 FC4.3

From: TSS Subject: CJD or Alzheimer's, THE PA STUDY...full text Date: May 7, 2001 at 10:24 am PST

Diagnosis of dementia: Clinicopathologic correlations

Francois Boller, MD, PhD; Oscar L. Lopez, MD; and John Moossy, MD

Article abstract--Based on 54 demented patients consecutively autopsied at the University of Pittsburgh, we studied the accuracy of clinicians in predicting the pathologic diagnosis. Thirty-nine patients (72.2%) had Alzheimer's disease, while 15 (27.7%) had other CNS diseases (four multi-infarct dementia; three Creutzfeldt-Jakob disease; two thalamic and subcortical gliosis; three Parkinson's disease; one progressive supranuclear palsy; one Huntington's disease; and one unclassified). Two neurologists independently reviewed the clinical records of each patient without knowledge of the patient's identity or clinical or pathologic diagnoses; each clinician reached a clinical diagnosis based on criteria derived from those of the NINCDS/ADRDA. In 34 (63 %) cases both clinicians were correct, in nine (17%) one was correct, and in 11 (20%) neither was correct. These results show that in patients with a clinical diagnosis of dementia, the etiology cannot be accurately predicted during life.

NEUROLOGY 1989;39:76-79

Address correspondence and reprint requests to Dr. Boller, Department of Neurology, 322 Scaife Hall, University of Pittsburgh Medical School, Pittsburgh, PA 15261.

January 1989 NEUROLOGY 39 79


From: TSS ( Subject: Evaluation of Cerebral Biopsies for the Diagnosis of Dementia Date: May 8, 2001 at 6:27 pm PST

Subject: Evaluation of Cerebral Biopsies for the Diagnosis of Dementia Date: Tue, 8 May 2001 21:09:43 -0700 From: "Terry S. Singeltary Sr." Reply-To: Bovine Spongiform Encephalopathy To: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000117/!

#### Bovine Spongiform Encephalopathy ####

Evaluation of Cerebral Biopsies for the Diagnosis of Dementia

Christine M. Hulette, MD; Nancy L. Earl, Md; Barbara J. Crain, MD, Phd

To identify those patients most likely to benefit from a cerebral biopsy to diagnose dementia, we reviewed a series of 14 unselected biopsies performed during a 9-year period (1980 through 1989) at Duke University Medical Center, Durham, NC. Pathognomonic features allowed a definitive diagnosis in seven specimens. Nondiagnostic abnormalities but not diagnostic neuropathologic changes were seen in five additional specimens, and two specimens were normal. Creutzfeldt-Jakob disease was the most frequent diagnosis. One patient each was diagnosed as having Alzheimer's disease, diffuse Lewy body disease, adult-onset Niemann-Pick disease, and anaplastic astrocytoma. We conclude that a substantial proportion of patients presenting clinically with atypical dementia are likely to receive a definitive diagnosis from a cerebral biopsy. However, in those with coexisting hemiparesis, chorea, athetosis, or lower motor neuron signs, cerebral biopsies are less likely to be diagnostic. (Arch Neurol. 1992;49:28-31)

"Dementia" is a syndrome characterized by global deterioration of cognitive abilities and is the general term used to describe the symptom complex of intellectual deterioration in the adult. It is associated with multiple causes, although Alzheimer's disease (AD) alone accounts for approximately 60% of cases.1-3...


Subject: Re: Hello Dr. Manuelidis
Date: Fri, 22 Dec 2000 17:47:09 -0500
From: laura manuelidis
Reply-To: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000117/! Organization: Yale Medical School
To: "Terry S. Singeltary Sr."

References: <mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000117/!> <mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000117/!> <mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000117/!> <mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000117/!> <mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000117/!> <mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000117/!> <mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000117/!>

Dear Terry,

One of our papers (in Alzheimer's Disease Related Disord. 3:100-109, 1989) in text cites 6 of 46 (13%) of clinical AD as CJD. There may be a later paper from another lab showing the same higher than expected incidence but I can't put my hands on it right now. We also have a lot of papers from 1985 on stating that there are likely many silent (non-clinical) CJD infections, i.e. much greater than the "tip of the iceberg" of long standing end-stage cases with clinical symptoms. Hope this helps.

best wishes for the new year laura manuelidis



Subject: Alzheimer's, CJD, TSE, and the AA amyloidosis
From: "Terry S. Singeltary Sr." <[log in to unmask]>
Reply-To: Sustainable Agriculture Network Discussion Group <[log in to unmask]>
Date: Sun, 24 Jun 2007 18:10:49 -0500 Content-Type: text/plain Parts/Attachments: text/plain (515 lines)

Subject: Amyloidogenic potential of foie gras Date: June 22, 2007 at 2:23 pm PST

Amyloidogenic potential of foie gras

Alan Solomon*†, Tina Richey*, Charles L. Murphy*, Deborah T. Weiss*, Jonathan S. Wall*, Gunilla T. Westermark‡, and Per Westermark§ *Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920; ‡Division of Cell Biology, Linko¨ ping University, SE-58185 Linko¨ ping, Sweden; and §Department of Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden Communicated by D. Carleton Gajdusek, Institut de Neurobiologie Alfred Fessard, Gif-sur-Yvette, France, January 30, 2007 (received for review October 10, 2006)

The human cerebral and systemic amyloidoses and prionassociated spongiform encephalopathies are acquired or inherited protein folding disorders in which normally soluble proteins or peptides are converted into fibrillar aggregates. This is a nucleation-dependent process that can be initiated or accelerated by fibril seeds formed from homologous or heterologous amyloidogenic precursors that serve as an amyloid enhancing factor (AEF) and has pathogenic significance in that disease may be transmitted by oral ingestion or parenteral administration of these conformationally altered components. Except for infected brain tissue, specific dietary sources of AEF have not been identified. Here we report that commercially available duck- or goose-derived foie gras contains birefringent congophilic fibrillar material composed of serum amyloid A-related protein that acted as a potent AEF in a transgenic murine model of secondary (amyloid A protein) amyloidosis. When such mice were injected with or fed amyloid extracted from foie gras, the animals developed extensive systemic pathological deposits. These experimental data provide evidence that an amyloid-containing food product hastened the development of amyloid protein A amyloidosis in a susceptible population. On this basis, we posit that this and perhaps other forms of amyloidosis may be transmissible, akin to the infectious nature of prion-related illnesses. amyloid protein A amyloidosis  amyloid-enhancing factor  protein aggregation  rheumatoid arthritis  transmissibility Amyloid protein A amyloidosis (AA) occurs in patients with rheumatoid arthritis and other chronic inflammatory diseases and results from a sustained elevation of the apolipoprotein serum amyloid A (SAA) protein produced by hepatocytes under regulation by interleukin (IL)-1, IL-6, and tumor necrosis factor (1). This acute-phase reactant is cleaved into an 76- residue N-terminal fragment deposited as amyloid predominately in the kidneys, liver, and spleen. The disorder also can be induced experimentally in susceptible strains of mice by inflammatory stimuli that result in an 1,000-fold increase in SAA concentration (2). Further, the lag phase of this process is greatly decreased by injecting or feeding animals extracts of amyloidladen spleens of affected mice (2–5). To determine whether amyloid-containing food products exhibit amyloid enhancing factor (AEF) activity, we used a more robust in vivo murine model of AA amyloidosis involving mice carrying the human IL-6 (hIL-6) gene under control of either the murine metallothionein-1 (MT-1) (MT-1/hIL-6) or histocompatibility H2-Ld (H2/hIL-6) promoter (6). Typically, AA amyloid develops in these animals at 5 mo of age and is initially located predominately in the perifollicular regions of the spleen. Over the next 2–3 mo, the deposits spread rapidly into the liver parenchyma, renal glomerular and intertubular regions, cardiac muscle, tongue, and gastrointestinal tract and lead to death at 8–9 mo. However, by injection into 8-wk-old transgenic mice of a single 100-g i.v. dose of an exogenous source of AA fibrils, amyloid deposits are formed within 3 wk, and severe systemic disease (akin to that found in 8-mo-old animals) occurs within 2 mo, at which time the resultant pathology is lethal (7). AA amyloid deposits are commonly found in waterfowl, particularly Pekin ducks, in which the liver is predominately involved (8–10). This pathologica alteration is noticeably increased in birds subjected to stressful environmental conditions as well as to the forced feeding that is used to produce foie gras (8). This culinary product, derived from massively enlarged fatty livers results from gorging young ducks or geese up to three times daily over a 4-wk period with corn-based feed. We now report the results of our studies that have shown that AA-containing fibrils extracted from duck or goose foie gras have potent AEF activity when administered by i.v. injection or gavage into our IL-6 transgenic mice. Results and Discussion We analyzed several commercial sources of foie gras histochemically and found amyloid to be present. Microscopic examination of hematoxylin/eosin- and Congo red-stained sections cut from formalin-fixed, paraffin-embedded specimens revealed virtual replacement of the normal hepatic parenchyma by fat; additionally, green birefringent congophilic areas in residual vasculature were noted by polarizing microscopy (Fig. 1 a and b). Further, these deposits were immunostained by a specific anti-AA antiserum (Fig. 1c). Similar material was found in marketed paˆte´s prepared from duck or goose liver (Fig. 2). The AA composition of the hepatic amyloid deposits was confirmed chemically through analysis of material derived from acetone-defatted specimens extracted first with 0.15MNaCl and then distilled water. The isolates were strongly congophilic, and, when examined by transmission electron microscopy, contained fibrils with the typical ultrastructural features of amyloid; namely, 10-m-thick unbranched structures (Fig. 3a). Electrophoresis of the water-suspended product on a SDS/ polyacrylamide gel in the presence of 0.1 M DTT and 8 M urea revealed, after Coomassie blue staining, a protein band with aMr of 6,000, comparable to that of amyloid extracted from the spleen of a mouse with AA amyloidosis (Fig. 3b). After transfer to a PVDF membrane, this component was subjected to automated Edman degradation with which 14 residues identical in amino acid sequence to that of the N-terminal portion of duck SAA were detected. In a similar study of tryptic digests obtained from cleavage of this molecule after reduction and alkylation, six peptides that included 45 of the first 60 residues of duck SAA were identified by MS/MS (Fig. 3c) (9).

Author contributions: A.S., J.S.W., and P.W. designed research; T.R. and C.L.M. performed research; J.S.W., G.T.W., and P.W. analyzed data; A.S. and D.T.W. wrote the paper. The authors declare no conflict of interest. Freely available online through the PNAS open access option. Abbreviations: AA, amyloid protein A amyloidosis; AEF, amyloid enhancing factor; IL, interleukin; SAA, serum amyloid A protein. †To whom correspondence should be addressed at: University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37920. E-mail: asolomon@ This article contains supporting information online at 0700848104/DC1. © 2007 by The National Academy of Sciences of the USA 10998–11001  PNAS  June 26, 2007  vol. 104  no. 26


Subject: Re: Amyloidogenic potential of foie gras Date: June 22, 2007 at 2:26 pm PST

Vet Pathol 40:71–80 (2003) Pathology of AA Amyloidosis in Domestic Sheep and Goats C. ME´ NSUA, L. CARRASCO, M. J. BAUTISTA, E. BIESCAS, A. FERNA´ NDEZ, C. L. MURPHY, D. T. WEISS, A. SOLOMON, AND L. LUJA´ N Department of Animal Pathology, University of Zaragoza, Veterinary Faculty, Zaragoza, Spain (CM, EB, AF, LL); Department of Anatomy and Comparative Pathology, University of Co´rdoba, Veterinary Faculty, Campus de Rabanales, Co´rdoba, Spain (LC, MJB); and Human Immunology and Cancer Program, University of Tennessee Graduate School of Medicine, Knoxville, TN (CLM, DTW, AS) Abstract. We describe the main pathologic changes in small ruminants affected by AA amyloidosis, together with the partial sequence of the protein involved. Twenty-one sheep and one goat were selected for presenting macroscopic kidney lesions compatible with systemic amyloidosis. Available tissue samples were studied by histologic, immunopathologic, and ultrastructural means. Renal lesions were characterized grossly by pale cortical surfaces with scattered, miliary, whitish-yellow foci and on cut cortical surfaces by straight, whitish-yellow striations. Gangrenous pneumonia was observed in 16 out of 21 affected sheep (76.2%), although other chronic inflammations were also observed. Amyloid was detected in all grossly affected kidneys using Congo red staining, lesions being most remarkable in glomeruli, affecting 95.5% of animals studied. Congophilic deposits were also observed in intertubular interstitium (68.2%) and medulla (57.1%). All amyloid-affected animals presented proximal convoluted tubule lesions, mostly characterized by an increase in diameter and by hyaline granular degeneration that were responsible for the macroscopic appearance of the kidney. Histologically, amyloid was also seen in blood vessels, spleen, liver, lymph nodes, gastrointestinal tract, and adrenal glands. All amyloid deposits demonstrated greenish-yellow birefringence with polarized light, and the antisera prepared against goat amyloid extracts specifically reacted with birefringent congophilic deposits of both sheep and goats. Ultrastructurally, these deposits were formed by masses of straight, nonbranching fibrils located predominantly in the basement membranes of glomerular capillaries and in the mesangium. Partial sequence of the protein in sheep and goats indicated a high degree of homology with the previously reported sequence of sheep Serum Amyloid A. Key words: AA amyloidosis, amyloid, goats, kidney, sheep, small ruminants.


Subject: Inactivation of amyloid-enhancing factor (AEF): study on experimental murine AA amyloidosis Date: June 24, 2007 at 1:11 pm PST

Masatoshi Omoto · Tadaaki Yokota · Dan Cui Yoshinobu Hoshii · Hiroo Kawano · Toshikazu Gondo Tokuhiro Ishihara · Takashi Kanda

Inactivation of amyloid-enhancing factor (AEF): study on experimental murine AA amyloidosis

Abstract It is known that amyloid-enhancing factor (AEF) shortens the preamyloid phase in experimentally induced AA amyloidosis in mice. Because it is reported that AEF serves as both a nidus and a template for amyloid formation, AA amyloidosis may have transmissibility by a prionlike mechanism. It has been shown that amyloid fi brils also have AEF activity, and amyloid fi brils with AEF activity were named fi bril-amyloid enhancing factor (F-AEF). In this study, we investigated methods to inactivate the AEF activity. AEF was extracted from the thyroid gland obtained at autopsy of a patient with AA amyloidosis. Before injection into mice, AEF was treated with several methods for inactivation. Of all the tested treatments, 1 N NaOH, 0.1 N NaOH, and autoclaving consistently demonstrated complete inactivation of AEF. Heat treatment led to incomplete inactivation, but 0.01 N NaOH, 0.001 N NaOH, pepsin, trypsin, pronase, and proteinase K treatment had no effect on AEF activity. By analysis with transmission electron microscopy, the AEF preparation contains amyloid fi brils, and a change of ultrastructure was shown after 1 N NaOH, 0.1 N NaOH, and autoclaving treatment. Furthermore, immunoblotting of AEF with antihuman AA antibody revealed that the protein band was scarcely found after autoclaving, 1 N NaOH, and 0.1 N NaOH treatment. Our results suggest that, similar to Creutzfeldt–Jakob M. Omoto (*) · T. Kanda Department of Neurology and Clinical Neuroscience, Yamaguchi University School of Medicine, 1-1-1 Minamikogushi, Ube City, Yamaguchi 755-8505, Japan Tel. +81-836-22-2719; Fax +81-836-22-2364 e-mail: [log in to unmask] T. Yokota Department of Pathology, Kokura Memorial Hospital, Yamaguchi, Japan D. Cui · Y. Hoshii · H. Kawano · T. Ishihara Department of Radiopathological and Science, Yamaguchi University School of Medicine, Fukuoka, Japan T. Gondo Department of Surgical Pathology, Yamaguchi University Hospital, Yamaguchi, Japan disease (CJD), amyloidosis may require chemical or autoclaving decontamination. Key words Amyloid-enhancing factor · Amyloidosis · Creutzfeldt–Jakob disease · Prion · Transmission electron


In our experiments with mice, the activity of F-AEF was markedly decreased after autoclaving treatment under conditions of 132°C for 1 h and 1 N NaOH and 0.1 N NaOH treatment for 1 h. For CJD materials, the Committee on Health Care Issues of the American Neurological Association recommended treatment with 1 N NaOH as a standard sterilization procedure.18 Heat treatment led to substantial but incomplete inactivation in this study. The Committee on Health Care Issues of the American Neurological Association reported that boiling was an ineffective procedure for CJD tissues and contaminated materials.18 Tateishi et al. showed that heat treatment with SDS was effective.17 The acceleration of amyloid deposition may be a primary event in disease, CJD, bovine spongiform encephalopathy (BSE), familial amyloid polyneuropathy, and AA and human senile systemic amyloidosis.32 Walker et al. reported Aß amyloid extracted from an Alzheimer disease brain may have potential of prion protein.33

The property described for F-AEF is similar to that of prion reported in CJD. Chemical or autoclaving decontamination for CJD is necessary for most items associated with surgery or autopsy.34 We suggest that amyloidosis may need chemical or autoclaving decontamination similar to CJD.

Acknowledgments We thank Mr. Jitsuo Kashitani for excellent technical assistance. This work was supported by a grant from the Intractable Disease Division, the Ministry of Health and Welfare, a Research Committee for Epochal Diagnosis and Treatment of amyloidosis in Japan, and a Research Committee for amyloidosis.

Alzheimer-type neuropathology 28 year old patient with idCJD Sun Feb 19, 2006 11:14

SHORT REPORT Alzheimer-type neuropathology in a 28 year old patient with iatrogenic Creutzfeldt-Jakob disease after dural grafting M Preusser1, T Ströbel1, E Gelpi1,2, M Eiler3, G Broessner4, E Schmutzhard4 and H Budka1,2 1 Institute of Neurology, Medical University Vienna, Austria 2 Austrian Reference Centre for Human Prion Diseases (OERPE), General Hospital Vienna, Austria 3 Department of Neurology, LKH Rankweil, Austria 4 Department of Neurology, Medical University Innsbruck, Innsbruck, Austria

Correspondence to: Dr H Budka Institute of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 4J, 1097 Vienna, Austria; [log in to unmask]

ABSTRACT We report the case of a 28 year old man who had received a cadaverous dura mater graft after a traumatic open skull fracture with tearing of the dura at the age of 5 years. A clinical suspicion of Creutzfeldt-Jakob disease (CJD) was confirmed by a brain biopsy 5 months prior to death and by autopsy, thus warranting the diagnosis of iatrogenic CJD (iCJD) according to WHO criteria. Immunohistochemistry showed widespread cortical depositions of disease associated prion protein (PrPsc) in a synaptic pattern, and western blot analysis identified PrPsc of type 2A according to Parchi et al. Surprisingly, we found Alzheimer-type senile plaques and cerebral amyloid angiopathy in widespread areas of the brain. Plaque-type and vascular amyloid was immunohistochemically identified as deposits of beta-A4 peptide. CERAD criteria for diagnosis of definite Alzheimer’s disease (AD) were met in the absence of neurofibrillar tangles or alpha-synuclein immunoreactive inclusions. There was no family history of AD, CJD, or any other neurological disease, and genetic analysis showed no disease specific mutations of the prion protein, presenilin 1 and 2, or amyloid precursor protein genes. This case represents (a) the iCJD case with the longest incubation time after dural grafting reported so far, (b) the youngest documented patient with concomitant CJD and Alzheimer-type neuropathology to date, (c) the first description of Alzheimer-type changes in iCJD, and (d) the second case of iCJD in Austria. Despite the young patient age, the Alzheimer-type changes may be an incidental finding, possibly related to the childhood trauma.


Article Posted: 04/15/2007 9:16:48 PM

Human and Animal Food Poisoning with Mad Cow a Slow Death

an editorial by Terry S. Singeltary Sr.


WITH all the pet food deaths mounting from tainted pet food, all the suffering not only the animals are going through, but there owners as well, why are owners of these precious animals not crying about the mad cow tainted animal carcasses they poison there animals with everyday, and have been for decades, why not an uproar about that? well, let me tell you why, they don't drop dead immediately, it's a slow death, they simply call it FELINE and or CANINE ALZHEIMER'S DISEASE, DEMENTIA OR MAD CAT/DOG DISEASE i.e. FSE and they refuse to document CSE i.e.Canine Spongiform Encephalopathy, but it's there and there is some strange pathological findings on that topic that was convientantly swept under the rug. Sadly, this happens everyday with humans, once again confidently swept under the rug as Alzheimer's and or dementia i.e. fast Alzheimer's. Who wants to spend money on an autopsy on an old dog or cat? Sadly, it's the same with humans, you get old and demented your either die or your family puts you in an old folks home and forgets about you, then you die, and again, no autopsy in most cases. Imagine 4.5 annually with Alzheimer's, with and estimated 20+ million dieing a slow death by 2050, and in reality it will most likely be much higher than that now that the blood supply has been infiltrated with the TSE agent, and we now know that blood is another route and source for this hideous disease. It's hell getting old now a days.

NOW, for the ones that don't believe me, well mad cow has been in the USA for decades undetected officially, but the late Richard Marsh documented way back, again, swept under the rug. Then in 2003 in December, the first case of BSE was finally documented, by accident. Then you had the next two cases that were documented in Texas and Alabama, but it took an act of Congress, literally, to get those finally documented, and when they were finally documented, they were atypical BSE or Bovine Amyloid Spongiform Encephalopathy (BASE), which when transmitted to humans is not vCJD or nvCJD, but SPORADIC CJD. Now you might ask yourself what about that mad cow feed ban of August 4, 1997, the year my mother died from the Heidenhain Variant of Creutzfeldt Jakob Disease (confirmed), well that ruminant to ruminant was merely a regulation on paper that nobody enforced. Just last month there was 10+ PLUS MILLION POUNDS OF BANNED BLOOD TAINTED MBM DISPERSED INTO COMMERCE, and there is no way the FDA will ever recover it. It will be fed out again. 2006 was a banner year for FDA mad cow protein fed out into commerce. Looks like 2007 will be also. Our federal Government has failed us at every corner when it comes to food safety. maybe your dog, your cat, your mom, your dad, your aunt, or your uncle, but again, who cares, there old and demented, just put them down, or put them away. It's hell getting old. ...END

Crushed heads (which inevitably involve brain and spinal cord material) are used to a limited extent but will also form one of the constituent raw materials of meat and bone meal, which is used extensively in pet food manufacturer...

Alzheimer's and CJD

Saturday, March 22, 2008

10 Million Baby Boomers to have Alzheimer's in the coming decades 2008 Alzheimer's disease facts and figures

re-Association between Deposition of Beta-Amyloid and Pathological Prion Protein in Sporadic Creutzfeldt-Jakob Disease

Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518